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PREFACE 

The various composite materials texts that have been published present topics from 
either a materials science or applied mechanics viewpoint. This text presents the 
subject from a mechanics point of view and limits discussions to continuous fiber 
composites. Topics are developed at a level suitable for terminal undergraduate 
students and beginning graduate students. As a prerequisite, students should have 
completed a course in strength of materials. Additionally, they should be familiar 
with stress-strain relations for isotropic materials and load-stress relationships. 
The philosophy behind this text is that it should be fundamentally simple enough 
for a senior undergraduate to understand and apply the concepts forwarded, while 
at the same time not too trivial for a beginning graduate student. 

The scope of this text is limited to topics associated with the analysis and design 
of continuous fiber laminated composite materials. Lamina and laminate anal- 
ysis is presented with a blend of theoretical developments and examples. The 
analysis of laminated composites relies heavily on concepts developed in under- 
graduate statics and mechanics of materials courses. Examples presented in this 
text require a understanding of free-body diagrams and analysis techniques intro- 
duced in undergraduate mechanics courses. Experimental techniques applicable to 
defining the constitutive relationships for orthotropic lamina are presented, as are 
failure theories for orthotropic materials. 

After establishing the stress- strain relationships, discussing special testing consid- 
erations, and covering failure criteria for orthotropic lamina, classical lamination 
theory is developed. An attempt has been made to present material in an easy- 
to-follow, logical manner. Loading conditions involving mechanical, thermal, and 
hygral loads are considered after the effect of each is discussed and developed 
independently. 

Many of the topics covered in this text are a compilation of the topics covered 
in preceding books, such as Primer on Composite Materials: Analysis by Ashton, 
Halpin, and Petit; Mechanics of Composite Materials by Jones; Introduction to 
Composite Materials by Tsai and Hahn; Experimental Mechanics of Fiber Rein- 
forced Composite Materials by Whitney, Daniel, and Pipes; and The Behavior of 

xi 
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xii Preface 

Structures Composed of Composite Materials by Vinson and Sierakowski. These 
texts served as the foundation upon which this text was developed. The present 
text incorporates many of the standard equations and formulations found in the 
preceding texts and builds upon them. 

I am deeply thankful to Professor H. R. Busby (The Ohio State University) 
for his friendship, helpful comments, suggestions, and encouragement during the 
preparation of this manuscript. Finally, I wish to thank my wife, Ellen, for her 
understanding during the course of this project. 
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INTRODUCTION TO COMPOSITE 
MATERIALS 

1.1 Historic and Introductory Comments 

In the most general of terms, a composite is a material that consists of two or more 
constituent materials or phases. Traditional engineering materials (steel, aluminum, 
etc.) contain impurities that can represent different phases of the same material and 
fit the broad definition of a composite, but are not considered composites because 
the elastic modulus or strength of the impurity phase is nearly identical to that of 
the pure material. The definition of a composite material is flexible and can be 
augmented to fit specific requirements. In this text a composite material is consid- 
ered to be one that contains two or more distinct constituents with significantly 
different macroscopic behavior and a distinct interface between each constituent 
(on the microscopic level). This includes the continuous fiber laminated compos- 
ites of primary concern herein, as well as a variety of composites not specifically 
addressed. 

Composite materials have been in existence for many centuries. No record exists 
as to when people first started using composites. Some of the earliest records of 
their use date back to the Egyptians, who are credited with the introduction of 
plywood, papier-miichc-5, and the use of straw in mud for strengthening bricks. 
Similarly, the ancient Inca and Mayan civilizations used plant fibers to strengthen 
bricks and pottery. Swords and armor were plated to add strength in medieval 
times. An example is the Samurai sword, which was produced by repeated folding 
and reshaping to form a multilayered composite (it is estimated that several million 
layers could have been used). Eskimos use moss to strengthen ice in forming 
igloos. Similarly, it is not uncommon to find horse hair in plaster for enhanced 
strength. The automotive industry introduced large-scale use of composites with the 
Chevrolet Corvette. All of these are examples of man-made composite materials. 
Bamboo, bone, and celery are examples of cellular composites that exist in nature. 
Muscle tissue is a multidirectional fibrous laminate. There are numerous other 
examples of both natural and man-made composite materials. 

1 
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2 Laminar Composites 

The structural materials most commonly used in design can be categorized in four 
primary groups: metals, polymers, composites, and ceramics. These materials have 
been used to various degrees since the beginning of time. Their relative importance 
to various societies throughout history has fluctuated. Ashby [ 11 presents a chrono- 
logical variation of the relative importance of each group from 10,OOO B.C. and 
extrapolates their importance through the year 2020. The information contained 
in Ashby’s article has been partially reproduced in Figure 1.1. The importance 
of composites has experienced steady growth since about 1960 and is projected 
to continue to increase through the next several decades. The relative importance 
of each group of materials is not associated with any specific unit of measure 
(net tonnage, etc.). As with many advances throughout history, advances in mate- 
rial technology (from both manufacturing and analysis viewpoints) typically have 
their origins in military applications. Subsequently, this technology filters into the 
general population and alters many aspects of society. This has been most recently 
seen in the marked increase in relative importance of structural materials such as 
composites starting around 1960, when the race for space dominated many aspects 
of research and development. Similarly, the Strategic Defense Initiative (SDI) 
program in the 1980s prompted increased research activities in the development 
of new material systems. 

The composites generally used in structural applications are best classified as 
high performance. They are typically made from synthetic materials, have high 
strength-to-weight ratios, and require controlled manufacturing environments for 

Figure 1.1. Relative importance of material development through history (after 
Ashby [I]) .  
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Introduction to Composite Materials 3 

optimum performance. The aircraft industry uses composites to meet performance 
requirements beyond the capabilities of metals. The Boeing 757, for example, uses 
approximately 760 ft3 of composites in its body and wing components, with an 
additional 361 ft3 used in rudder, elevator, edge panels, and tip fairings. An accu- 
rate breakdown of specific components and materials can be found in Reinhart [2]. 
The B-2 bomber contains carbon and glass fibers, epoxy resin matrices, and high- 
temperature polyimides as well as other materials in more than 10,OOO composite 
components. It is considered to be one of the first major steps in making aircraft 
structures primary from composites. Composites are also used in race cars, tennis 
rackets, golf clubs, and other sports and leisure products. Although composite mate- 
rials technology has grown rapidly, it is not fully developed. New combinations 
of fiberhesin systems, and even new materials, are constantly being developed. 
The best one can hope to do is identify the types of composites that exist through 
broad characterizations and classifications. 

1.2 Characteristics of a Composite Material 

The constituents of a composite are generally arranged so that one or more discon- 
tinuous phases are embedded in a continuous phase. The discontinuous phase is 
termed the reinforcement and the continuous phase is the matrix. An exception to 
this is rubber particles suspended in a rigid rubber matrix, which produces a class 
of materials known as rubber-modified polymers. In general the reinforcements 
are much stronger and stiffer than the matrix. Both constituents are required, and 
each must accomplish specific tasks if the composite is to perform as intended. 

A material is generally stronger and stiffer in fiber form than in bulk form. The 
number of microscopic flaws that act as fracture initiation sites in bulk materials are 
reduced when the material is drawn into a thinner section. In fiber form the material 
will typically contain very few microscopic flaws from which cracks may initiate 
to produce catastrophic failure. Therefore, the strength of the fiber is greater than 
that of the bulk material. Individual fibers are hard to control and form into useable 
components. Without a binder material to separate them, they can become knotted, 
twisted, and hard to separate. The binder (matrix) material must be continuous and 
surround each fiber so that they are kept distinctly separate from adjacent fibers 
and the entire material system is easier to handle and work with. 

The physical and mechanical properties of composites are dependent on the proper- 
ties, geometry, and concentration of the constituents. Increasing the volume content 
of reinforcements can increase the strength and stiffness of a composite to a point. 
If the volume content of reinforcements is too high there will not be enough 
matrix to keep them separate, and they can become tangled. Similarly, the geom- 
etry of individual reinforcements and their arrangement within the matrix can affect 
the performance of a composite. There are many factors to be considered when 
designing with composite materials. The type of reinforcement and matrix, the 
geometric arrangement and volume fraction of each constituent, the anticipated 
mechanical loads, the operating environment for the composite, etc., must all be 
taken into account. 
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4 Laminar Composites 

Analysis of composites subjected to various mechanical, thermal, and hygral condi- 
tions is the main thrust of this text. Discussions are limited to continuous fiber 
laminated composites. In introductory strength of materials, the constitutive rela- 
tionship between stress and strain was established for homogeneous isotropic 
materials as Hooke’s law. A composite material is analyzed in a similar manner, 
by establishing a constitutive relationship between stress and strain. 

Isotropic, homogeneous materials (steel, aluminum, etc.) are assumed to be uniform 
throughout and to have the same elastic properties in all directions. Upon applica- 
tion of a uniaxial tensile load, an isotropic material deforms in a manner similar to 
that indicated in Figure 1.2 (the dashed lines represent the undeformed specimen). 
Assuming a unit width and thickness for the specimen, the transverse in-plane and 
out-of-plane displacements are the same. Unlike conventional engineering mate- 
rials, a composite material is generally nonhomogeneous and does not behave as 
an isotropic material. Most composites behave as either anisotropic or orthotropic 
materials. 

Figure 1.2. Dpical material responses for isotropic, anisotropic, and orthotropic mate- 
riak subjected to axial tension. 

The material properties of an anisotropic material are different in all directions. 
There is typically a coupling of extension and shear deformation under conditions 
of uniaxial tension. The response of an anisotropic material subjected to uniaxial 
tension is also illustrated in Figure 1.2. There are varying degrees of anisotropic 
material behavior, and the actual deformation resulting from applied loads depends 
on the material. 

The material properties of an orthotropic material are different in three mutually 
perpendicular planes, but there is generally no shear-extension coupling as with 
an anisotropic material. The transverse in-plane and out-of-plane displacements are 
not typically the same, because Poisson’s ratio is different in these two directions. 
Figure 1.2 also illustrates orthotropic material response. Although it appears similar 
to that of an isotropic material, the magnitudes of the in-plane and out-of-plane 
displacements are different. 

1.3 Composite Materials Classifications 

Composite materials are usually classified according to the type of reinforcement 
used. Two broad classes of composites are fibrous and particulate. Each has unique 
properties and application potential, and can be subdivided into specific categories 
as discussed below. 
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introduction to Composite Materials 5 

Fibrous. A fibrous composite consists of either continuous (long) or chopped 
(whiskers) fibers suspended in a matrix material. Both continuous fibers and 
whiskers can be identified from a geometric viewpoint: 

Continuous Fibers. A continuous fiber is geometrically characterized as having 
a very high length-to-diameter ratio. They are generally stronger and stiffer 
than bulk material. Fiber diameters generally range between 0.00012 and 
0.0074 pin (3-200 pm). depending upon the fiber [3]. 
Whiskers. A whisker is generally considered to be a short, stubby fiber. It can 
be broadly defined as having a length-to-diameter ratio of 5 < Z/d < lo00 and 
beyond [4]. Whisker diameters generally range between 0.787 and 3937 pin 
(0.02-100 pm). 

Composites in which the reinforcements are discontinuous fibers or whiskers can be 
produced so that the reinforcements have either random or biased orientation. Mate- 
rial systems composed of discontinuous reinforcements are considered single layer 
composites. The discontinuities can produce a material response that is anisotropic, 
but in many instances the random reinforcements produce nearly isotropic compos- 
ites. Continuous fiber composites can be either single layer or multilayered. The 
single layer continuous fiber composites can be either unidirectional or woven, 
and multilayered composites are generally referred to as laminates. The material 
response of a continuous fiber composite is generally orthotropic. Schematics of 
both types of fibrous composites are shown in Figure 1.3. 

Figure 1.3. Schematic representation of fibrous composites. 

Particulate. A particulate composite is characterized as being composed of parti- 
cles suspended in a matrix. Particles can have virtually any shape, size or config- 
uration. Examples of well-known particulate composites are concrete and particle 
board. There are two subclasses of particulates: flake and filledskeletal: 

Fluke. A flake composite is generally composed of flakes with large ratios of 
platform area to thickness, suspended in a matrix material (particle board, for 
example). 
FiZZed/SkeZetul. A filledskeletal composite is composed of a continuous skele- 
tal matrix filled by a second material: for example, a honeycomb core filled 
with an insulating material. 
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6 Laminar Composites 

The response of a particulate composite can be either anisotropic or orthotropic. 
Such composites are used for many applications in which strength is not a signifi- 
cant component of the design. A schematic of several types of particulate compos- 
ites is shown in Figure 1.4. 

Figure 1.4. Schematic representation of particulate composites. 

1.4 Fundamental Composite Material Terminology 

Some of the more prominent terms used with composite materials are defined 
below. A more detailed list can be found in Tsai [5],  as well as in the Glossary. 

Lamina. A lamina is a flat (or sometimes curved) arrangement of unidirectional 
(or woven) fibers suspended in a matrix material. A lamina is generally assumed 
to be orthotropic, and its thickness depends on the material from which it is made. 
For example, a graphite/epoxy (graphite fibers suspended in an epoxy matrix) 
lamina may be on the order of 0.005 in (0.127 mm) thick. For the purpose of 
analysis, a lamina is typically modeled as having one layer of fibers through the 
thickness. This is only a model and not a true representation of fiber arrangement. 
Both unidirectional and woven lamina are schematically shown in Figure 1.5. 

Figure 1.5. Schematic representation of unidirectional and woven composite lamina. 

Reinforcements. Reinforcements are used to make the composite structure or 
component stronger. The most commonly used reinforcements are boron, glass, 
graphite (often referred to as simply carbon), and Kevlar, but there are other types 
of reinforcements such as alumina, aluminum, silicon carbide, silicon nitride, and 
titanium. 
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Introduction to Composite Materials 7 

Fibers. Fibers are a special case of reinforcements. They are generally continuous 
and have diameters ranging from 120 to 7400 pin (3-200 pm). Fibers are typically 
linear elastic or elastic-perfectly plastic and are generally stronger and stiffer than 
the same material in bulk form. The most commonly used fibers are boron, glass, 
carbon, and Kevlar. Fiber and whisker technology is continuously changing [3,4,6]. 

Matrix. The matrix is the binder material that supports, separates, and protects 
the fibers. It provides a path by which load is both transferred to the fibers and 
redistributed among the fibers in the event of fiber breakage. The matrix typically 
has a lower density, stiffness, and strength than the fibers. Matrices can be brittle, 
ductile, elastic, or plastic. They can have either linear or nonlinear stress-strain 
behavior. In addition, the matrix material must be capable of being forced around 
the reinforcement during some stage in the manufacture of the composite. Fibers 
must often be chemically treated to ensure proper adhesion to the matrix. The most 
commonly used matrices are carbon, ceramic, glass, metal, and polymeric. Each 
has special appeal and usefulness, as well as limitations. Richardson [7] presents 
a comprehensive discussion of matrices, which guided the following presentation. 

1. Carbon Matrix. A carbon matrix has a high heat capacity per unit weight. They 
have been used as rocket nozzles, ablative shields for reentry vehicles, and 
clutch and brake pads for aircraft. 

2. Ceramic Matrix. A ceramic matrix is usually brittle. Carbon, ceramic, metal, 
and glass fibers are typically used with ceramic matrices in areas where extreme 
environments (high temperatures, etc.) are anticipated. 

3.  Glass Matrix. Glass and glass-ceramic composites usually have an elastic 
modulus much lower than that of the reinforcement. Carbon and metal oxide 
fibers are the most common reinforcements with glass matrix composites. 
The best characteristics of glass or ceramic matrix composites is their 
strength at high service temperatures. The primary applications of glass matrix 
composites are for heat-resistant parts in engines, exhaust systems, and electrical 
components. 

4. Metal Matrix. A metal matrix is especially good for high-temperature use in 
oxidizing environments. The most commonly used metals are iron, nickel, tung- 
sten, titanium, magnesium, and aluminum. There are three classes of metal 
matrix composites: 
Class I .  The reinforcement and matrix are insoluble (there is little chance 
that degradation will affect service life of the part). Reinforcemendmatrix 
combinations in this class include tungsten or alumindcopper, BN-coated B 
or borodaluminum, and borodmagnesium. 
Class ZZ. The reinforcemendmatrix exhibit some solubility (generally over a 
period of time and during processing) and the interaction will alter the phys- 
ical properties of the composite. Reinforcemendmatrix combinations included 
in this class are carbon or tungstednickel, tungstedcolumbium, and tung- 
stedcopper(chromium). 
Class ZZZ. The most critical situations in terms of matrix and reinforcement are 
in this class. The problems encountered here are generally of a manufacturing 
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8 Laminar Composites 

nature and can be solved through processing controls. Within this class the 
reinforcementlmatrix combinations include alumina or boron or silicon carbide/ 
titanium, carbon or silicdaluminum, and tungsten/copper(titanium). 

5. Polymer Matrix. Polymeric matrices are the most common and least expensive. 
They are found in nature as amber, pitch, and resin. Some of the earliest 
composites were layers of fiber, cloth, and pitch. Polymers are easy to 
process, offer good mechanical properties, generally wet reinforcements well, 
and provide good adhesion. They are a low-density material. Because of 
low processing temperatures, many organic reinforcements can be used. A 
typical polymeric matrix is either viscoelastic or viscoplastic, meaning it 
is affected by time, temperature, and moisture. The terms thermoset and 
themplastic are often used to identify a special property of many polymeric 
matrices. 

Thermoplastic. A thermoplastic matrix has polymer chains that are not cross- 
linked. Although the chains can be in contact, they are not linked to each 
other. A thermoplastic can be remolded to a new shape when it is heated to 
approximately the same temperature at which it was formed. 
Thermoset. A thermoset matrix has highly cross-linked polymer chains. A 
thermoset can not be remolded after it has been processed. Thermoset matrices 
are sometimes used at higher temperatures for composite applications. 

Laminate. A laminate is a stack of lamina, as illustrated in Figure 1.6, oriented in 
a specific manner to achieve a desired result. Individual lamina are bonded together 
by a curing procedure that depends on the material system used. The mechanical 
response of a laminate is different from that of the individual lamina that form it. 
The laminate’s response depends on the properties of each lamina, as well as the 
order in which the lamina are stacked. 

Figure 1.6. Schematic of a laminuted composite. 

Micromechanics. A specialized area of composites involving a study of the inter- 
action of constituent materials on the microscopic level. This study is gener- 
ally conducted by use of a mathematical model describing the response of each 
constituent material. 

Macrornechanics. A study of the overall response of a lamina (or laminate) in 
which the effects of constituent materials are averaged to achieve an apparent 
response on the macroscopic level. 
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Introduction to Composite Materials 9 

1.5 Advantages Afforded by Composite Materials 

Materials are often expected to perform multiple tasks. An example is a smart mate- 
rial, in which sensors embedded in the material are used to determine conditions 
within the material. The use of an embedded sensor to define real-time conditions 
in a structure is beneficial in predicting critical component life, or identifying 
when preassigned parameters reach a critical stage and require specific action. 
One approach to developing smart structures is to use fiber optics embedded in a 
composite. They can be directly embedded into the structure during manufacture 
and are somewhat protected from damage. The general nature of a smart struc- 
ture raises issues not generally considered with conventional laminates. Journal 
articles, conference proceedings, and books dedicated to smart structures are 
available [8]. 

Composites offer a wide range of characteristics suitable for many design require- 
ments. The apparent elastic modulus and tensile strength for several types of fibers 
shown in Table 1.1 indicates a wide range of possible material responses, which 
can be altered by changing the procedure used to develop each fiber. Of the fiber 
properties shown, carbon offers the most variety. Agarwal and Broutman [9] identi- 
fied a total of 38 carbon fibers with elastic moduli and strength ranges of 4 x lo6 - 
88 x lo6 psi (28-607 GPa) and 140-450 ksi (966-3105 MPa), respectively, in 
1980. By 1986, there were 17 worldwide manufacturers producing 74 different 
grades of high-modulus carbon fibers, according to the Plastics and Rubber Insti- 
tute [6]. The growth in carbon fiber use is illustrated in Figure 1.7 for aerospace, 
sports, and “other” areas starting in 1977 and extrapolated to 1998 [lo]. 

Figure 1.7. Worldwide usage of carbon jibers from 1977 to 1998. 

The high elastic modulus and strength in Table 1.1 do not reveal the actual behavior 
of a composite once the fibers have been suspended in a matrix. The properties of 
the matrix also contribute to the strength and stiffness of the material system. Since 
the matrix is generally much weaker and less stiff than the fiber, the composite will 
not be as strong or stiff as the fibers themselves. In addition, the properties cited in 
the table refer only to the fiber direction. In a composite there are three directions 
to consider: one parallel to the fibers (longitudinal direction) and two perpendicular 
to the fibers (transverse directions). The properties in the longitudinal direction are 
superior to those in the transverse directions, in which the matrix is the dominant 
constituent. 
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Table 1.1. Apparent elastic modulus and strength of selectedjibers worn [4], [9]). 

Fiber Tensile Modulus 
Msi (GPa) 

Tensile Strength 
ksi (MPa) 

Berylium 
Boron 
Carbon: High tenacity, 

high modulus 
PAN (Polyacrylonitrite) 
Pitch (mesophase) 
Glass: E-Glass 

M-Glass 
Kevlar-29 
Kevlar-49 
Silica 
Tungsten 

S-Glass 

35 (240) 
56 (385) 

10.2 - 87.5 (70 -600) 

29.2-56.9 (200-390) 
24.8-100.6 (170-690) 

10.5 (72.4) 
12.4 (85.5) 
15.9 (110) 
8.6 (59) 

18.9 (128) 
16.5 (72.4) 
60 (414) 

189 (1300) 
405 (2800) 

254-509 (1750-3500) 

305-494 (2100-3400) 
189-349 (1300-2400) 

508 (3500) 
68 (4600) 

508 (3500) 
384 (2640) 
406 (2800) 
482 (5800) 
610 (4200) 

Composites are attractive for many design considerations. Since the fiber direction 
can be altered throughout the thickness of a laminate, a component’s response can 
be tailored to fit specific requirements. Designing a component with a zero coeffi- 
cient of thermal expansion can be an important consideration for space applications 
where one side of a structure can be exposed to extremely high temperatures while 
the other side experiences extremely low temperatures. 

A composite offers strength-to-weight and stiffness-to-weight ratios superior to 
those of conventional materials. Figure 1.8 illustrates this for several composite 
material systems in terms of strength and stiffness, respectively. As seen in these 
figures, a wide range of specific strength (a,/p) and specific modulus are (Elp) 
available. In some instances strength may be a primary consideration, while in 
others the stiffness is more important. In all cases shown the specific strength for 
the composite material systems is better than that for the conventional materials, 
whereas the specific modulus is not always superior. 

Composites offer better structural response characteristics, but they are expensive. 
Both the raw material and many manufacturing techniques used with compos- 
ites are more expensive than for conventional materials. There are many possible 
uses for composites not discussed herein. A sampling of current applications and 
techniques ranging from automotive parts to orthopedic applications is found in 
Drozda [ 101. 

1.6 Selected Manufacturing Techniques for Composites 

There are many manufacturing, fabricating, processing, and forming processes 
for composites. According to Richardson [7], there are seven major processes 
by which polymer matrix composites are formed: (1) molding, (2) casting, 
(3) thermoforming, (4) expansion, (5) coating, (6) fabrication, and (7) radiation. 
Within each of these processes different techniques can be used. For example, in 
the category of molding, there are 9 subprocesses containing 16 subsets: 
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Figure 1.8. SpeciJic strength and stiflness comparison for selected composites and 
conventional bulk materials. 

Injection 
Coinjection 
Reaction Injection 
Compression 
Caldenering 
Blow (extrusion-blow molding, injection-blow molding, stretch-blow molding, 
multilayer-blow molding) 
Extrusion 
Laminating 
Reinforcing (match-die molding, hand lay-up, spray-up molding, vacuum bag 
molding, filament winding, continuous reinforcing, cold molding, cold forming/ 
stamping, sintering, liquid-resin molding, vacuum-injection molding, thermal ex- 
pansion resin transfer) 

The other major processes for forming composites also contain subprocesses. The 
process selected for the production of a component depends on many variables and 
can influence the final product. Continuous fiber composites can be processed in 
various manners. The technique used depends to a large extent on the type of matrix 
used. Some techniques for polymer matrix composites are not appropriate for 
metal, ceramic, or thermoplastic matrix composites. Vinson and Sierakowski [ 1 11 
present some of the primary techniques for processing metal and nonmetal matrix 
as well as short fiber composites. Table 1.2 provides a synopsis of some procedures 
applicable to continuous fiber composites, arranged according to the type of matrix. 
The diverse nature of composite material systems dictates that no single procedure 
can be applied to all composites. The discussions in this section are limited to 
selected procedures for continuous fiber polymer matrix composites. Discussions 
of fabrication processes for metal matrix, ceramic matrix, and thermoplastic matrix 
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composites can be found in other references [2, 12- 161. Similarly, sheet-molding 
compounds (SMC) and bulk-molding compounds (BMC), which are composed of 
chopped fibers, are not addressed herein. 

Table 1.2. Common fabrication and curing processes for continuous 
Jiber laminated composite materiali (from [ll]). 

Processing 
Technique 

Nonmetal Matrix Metal Matrix 
Composites Composites 

Hand lay-up 
Vacuum baglautoclave 
Matched die molding 
Filament winding 
Pressure & roll bonding 
Plasma spraying 
Powder metallurgy 
Liquid infiltration 
Coextrusion 
Controlled solidification 
Rotational molding 
Pultrusion 
Injection molding 
Centrifugal casting 
Pneumatic impaction 
Thermoplastic molding 
Resin transfer molding (RTM) 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

The matrix of a polymeric composite can be either a thermoplastic or a thermoset. 
Both types are generally available as a pre-preg tape, which means the fibers 
have been precoated with the resin and arranged on a backing sheet in either 
unidirectional or woven configurations. A thermoset must be stored in a refriger- 
ation system since the resin is partially cured, and exposure to room temperature 
for extended periods can complete the curing process. A thermoplastic may be 
stored at room temperature until the matrix is melted during the final stages of 
processing. he-preg tape allows fabricators flexibility, because it eliminates the 
concern of mixing resin components in the correct proportions and subsequently 
combining resin and fiber. 

Continuous fiber polymer matrix composites are most effectively cured at elevated 
temperatures and pressures. Prior to the final cure procedure, the fiber arrangement 
through the thickness of the composite must be defined using either pre-preg tape 
or individual fibers coated with resin. Two approaches for doing this are hand 
lay-up and filament winding. Hand lay-up is generally used for sample preparation 
in laboratory applications involving pre-preg tape. It is also used in areas where a 
tailored laminate is required. In the aircraft industry it is not uncommon for several 
plies to be built up or dropped off in specific areas of a large structural component 
where strength or stiffness requirements vary. The hand lay-up procedure consists 
of using a pre-preg tape or woven mat to individually position each ply. In some 
applications the woven mat form of composite is placed directly into a mold and 
coated with resin prior to curing. In using this procedure a bleeder cloth should 
be used to absorb any extra resin that may be squeezed from the component when 
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pressure is applied during the cure procedure. In the case of a neat resin system 
a breather (without a bleeder) is used. In addition, a peel-ply or mold release 
agent that allows for easy removal of the specimen after curing is needed. After 
the laminate is layed-up, it is cured (generally using an autoclave or lamination 
press). 

Filament winding is perhaps the oldest fabrication procedure used for continuous 
fiber composites. Either individual fibers or tapes may be used with this process. 
A schematic of a generalized winding system for individual fibers is shown in 
Figure 1.9. The fiber is initially placed on a spool and fed through a resin bath. 
The resin-impregnated fiber is then passed through a feeder arm that is free to 
move at various speeds in the transverse direction. The fiber is then wound onto a 
mandrel (or a form, which in general is removed after forming is complete). The 
mandrel is turned by a lathe at a specified rate. The lathe may also be rotated as 
indicated in Figure 1.9. By controlling both the feeding and rotational rates, various 
ply orientations can be achieved. Specific names are given to the type of winding 
associated with different operating speeds (VI, v2, W I ,  W Z )  of the systems cornpo- 
nents. Table 1.3 identifies each type of winding and indicates which combinations 
of angular and linear velocity produce them (note that an entry of 0 implies no 
motion). By proper control of the motion parameters a filament-wound vessel can 
contain helical, circumferential, and polar windings, each illustrated in Figure 1.10. 
Braid-wrap and loop-wrap windings are also possible, but cannot be achieved using 
the system shown in Figure 1.9. Winding procedures involving pre-preg tapes are 
also possible. Examples of continuous helical, normal-axial, and rotating mandrel 
wraps are presented in Richardson [7]. After winding is complete the part is cured. 
Pressure vessels, rocket motor cases, power transmission shafts, and chemical tanks 
are well suited for filament winding. 

Figure 1.9. Schematic of a generalizedJiJament winding operation. 

After lay-up, polymer matrix composites must be cured using specified combi- 
nations of temperature and pressure. The most commonly recommended curing 
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Figure 1.10. Polar, circumferential; and helical windings. 

Table 1.3. BasicJilament winding patterns as a func- 
tion of winding system motions defined in Figure 1.9. 

Pattern w V1 v2 0 1  02 

Helical wind X X X 0 
Circumferential wind X 0 X 0 
Polar wind 0 0 X X 

procedures are a vacuum bag, autoclave, or lamination press. In the vacuum bag 
procedure, first the specimen is layed-up, then peel and bleeder (or breather) plies 
are placed around the specimen and the entire unit is placed on a tool plate. A 
boundary support (or dam) is placed around the periphery of the specimen, and a 
pressure plate is placed over the specimen. The pressure bag is then sealed around 
the tool plate. A vacuum is drawn and the specimen is cured. A schematic of the 
pressure bag assembly is shown in Figure 1.1 1. An autoclave curing procedure is 
somewhat different, since the autoclave can serve for temperature control as well 
as creating a vacuum. An autoclave cure often uses a vacuum bag as well. 

Figure 1.11. Vacuum bag method. 

During the final cure process, temperature and pressure must be controlled for spec- 
ified time periods and at specified rates. A schematic of a cure cycle is presented 
in Figure 1.12. The specifications of temperature pressure are typically defined by 
the material manufacturers. Failure to follow recommended procedures can result 
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Figure 1.12. Pressure-temperature-time relations for a possible cure cycle. 

in composites that are not structurally adequate. They may contain an unacceptable 
number of voids, or regions in which intraply adhesion is weak. 

Many other processing methods for composite materials could be discussed. The 
ones presented herein illustrate some of the procedures applicable to continuous 
fiber laminated composites. Other composite material systems require different 
processing methods. 
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A REVIEW OF STRESS, STRAIN, AND 
MATERIAL BEHAVIOR 

2.1 Introduction 

In developing methodologies for the analysis and design of laminated composite 
materials a consistent nomenclature is required. Stress and strain are presented 
in terms of Cartesian coordinates for two reasons: (1) continuity with develop- 
ments in undergraduate strength of materials courses, and (2) simplification of the 
analysis procedures involving thermal and hygral effects as well as the general 
form of the load-strain relationships. A shorthand notation (termed contracted) 
is used to identify stresses and strains. The coordinate axes are an x-y -z  system 
or a numerical system of 1-2-3. The 1-2-3 system is termed the material, or 
on-axis, system. Figure 2.1 shows the relationship between the x-y -z  and 1-2-3 
coordinate systems. All rotations of coordinate axes are assuumed to be about the 
z-axis, so z is coincident with the 3-direction, which is consistent with the assump- 
tion that individual lamina are modeled as orthotropic materials. The notational 
relationship between the Cartesian, tensor, material, and contracted stresses and 
strains is presented below for the special case when the x, y, and z axes coincide 
with the 1 ,  2, and 3 axes. 

Cartesian Tensor Material Contracted 

*x - Ex 0, - E ,  *I - E1 *I - E 1  

*Y - EY *YY - EYY 0 2  - E2 0 2  - E2 

*z - E z  *u - E u  0 3  - E3 0 3  - E3 

r y z  - Y y z  *yz  - 2% t 2 3  - y23 0 4  - E4 

txz  - Yxz 0 x 2  - 2 E x z  TI3 - y13 0 5  - E 5  

t X Y  - Y x y  o x y  - 2 E x y  t 1 2  - Y12 0 6  - E6 

2.2 Strain-Displacement Relations 

When external forces are applied to an elastic body, material points within the 
body are displaced. If this results in a change in distance between two or more 

17 
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Figure 2.1. Cartesian and material coordinate axes. 

of these points, a deformation exists. A displacement which does not result in 
distance changes between any two material points is termed a rigid body trans- 
lation or rotation. The displacement fields for an elastic body can be denoted 
by U(x ,  y, z ,  t ) ,  V(x ,  y, z ,  t). and W(x,  y, z ,  t), where U ,  V, and W represent the 
displacements in the x ,  y, and z directions, respectively, and t represents time. 
For our discussions only static analysis is considered and time is eliminated from 
the displacement fields. The displacement fields are denoted simply as U ,  V, and 
W. For many cases of practical interest these reduce to planar (two-dimensional) 
fields. 

Assume two adjacent material points A and B in Figure 2.2 are initially a distance 
dx apart. Assume line AB is parallel to the x-axis and displacements take place 
in the x-y  plane. Upon application of a load, the two points are displaced and 
occupy new positions denoted as A’ and B’. The change in length of dx is denoted 
as d L  and is expressed as 

d L =  /- 
2 

= d( 1 + 2 E )  + (E) 2 + (E) d x  

Figure 2.2. Displacement of material points A and B. 
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Assuming au lax  << 1 and avlax << 1, the terms (av/ax)* and (av/ax)2 are 
considered to be zero and the expression for d L  becomes 

d L =  1 + 2 - d ~  c 
Expanding this in a binomial series, d L  = [ 1 + aU/ax + h.o.t] dx.  The higher 
order terms (h.0.t.) are neglected since they are small. The normal strain in the 
x-direction is defined as sX = (dL  - dx) /dx  . Substituting d L  = [l + aU/ax + 
h.o.t.1 dx,  the strain in the x-direction is defined. This approach can be extended 
to include the y- and z-directions. The resulting relationships are 

a u  a v  a w  
E, = - 

az 
Shear strain is associated with a net change in right angles of a representative 
volume element (RVE). The deformation associated with a positive shear is shown 
in Figure 2.3 for pure shear in the x - y  plane. Material points 0, A, B, and 
C deform to 0’, A’, B’, and C’ as shown. Since a condition of pure shear is 
assumed, the original lengths dx  and d y  are unchanged. Therefore, aU/ax = 0 
and aV/ay = 0, and the angles eYx and Ox, can be defined from the trigonometric 
relationshim 

Figure 2.3. Deformation under conditions of positive pure shear. 

Small deformations are assumed so approximations of sine, M 8, and sin&, M 
Oxy are used. The shear strain in the x - y  plane is defined as 

a v  a u  
yXy = e,, + eyx = - - 6 = - + - 

ax ay 
n 
2 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



20 Laminar composites 

where q j  represents the angle between two originally orthogonal sides after defor- 
mation. For a negative shear strain the angle qj  increases. Similar expressions can 
be established for the x-z and y-z planes. The relationships between shear strain 
and displacement are 

au av au aw av aw 
yxy=-+- y - -+ -  yyz=-+-  ay ax xz - az ax az ay 

These are the Cartesian representations of shear strains and are related to the tensor 
form by yxy = 2EXy, yxz = 2 ~ , ~ ,  and yyz = 2 ~ ~ .  The 2 in this relationship can make 
the tensor form of laminate analysis complicated, especially when thermal and 
hygral effects are considered. 

Since strain is directly related to displacement, it is possible to establish the 
displacement fields U, V, and W from a strain field. For a displacement field 
to be valid it must satisfy a set of equations known as the compatibility equa- 
tions. These equations are generally expressed in terms of either strain or stress 
components. The compatibility equations ensure that the displacement fields will be 
single-valued functions of the coordinates when evaluated by integrating displace- 
ment gradients along any path in the region. The equations of compatibility can 
be found in numerous texts on elasticity, such as [l]. The strain component form 
of the constitutive equations is 

Each strain component is defined in terms of a displacement; therefore, these 
equations can be expressed in terms of displacements. In addition, the constitutive 
relationship (relating stress to strain) can be used to express these equations in 
terms of stress components. 

Example 2.1. Assume the only nonzero strains are = 10 pidin. cy = -2 pidin, 
and yxy = 5 pidin. The displacement fields U and V will be functions of x and y 
only. In the z-direction the displacement field will be W = 0. From the definitions 
of axial strain, 

U = dx = lox + A  V = d y  = -2y + B J J 
where A and B are constants of integration. From the definition of shear strain, 

au av aA aB y x y = 5 =  -+- = -+ -  
ay ax ay ax 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



A Review of Stress, Strain, and Material Behavior 21 

Therefore, A and B must be functions of y and x, respectively. Otherwise, a shear 
strain would not exist. These functions can be arbitrarily expressed as A(y) = C1 + 
C2y and B(x) = C3 + C4x. After differentiation, yxy = 5 = C2 + C.+ Therefore, 
U = lox + C1+ C2y and V = -2y + C3 + C4x. Constants C1 and C3 are rigid 
body translations. For conditions of equilibrium, rigid body translations vanish; 
therefore, C1 = C3 = 0. Similarly, rigid body rotations are not allowed; therefore, 

YXY au av _ -  - - j c2 = c4 = - 
ay ax 2 

The displacement field can thus be established as 

U = (lox + 2 . 5 ~ )  pin V = (-2y + 2 . 5 ~ )  pin 

These displacement fields can easily be checked to see that the compatibility 
requirements are satisfied. Since W = 0 and U and V are only functions of x and 
y, it is easy to establish, through the definitions of strain that E, = yyz = yxz = 0. 
Since the in-plane strains ( E ~ ,  cy, yxy) are constant, the compatibility conditions 
are satisfied. 

Sometimes it is convenient to use the strain-displacement definition from under- 
graduate strength, E = ALIL, instead of = aU/ax. Similarly, shear strains can 
be established using the small-angle approximations to define changes with respect 
to both the x- and y-axes. 

Example 2.2. Assume the two-dimensional solid shape shown is deformed as illus- 
trated by the dashed lines in Figure E2.2. 

Figure E2.2. 

Since the x-displacement of point A is 0.020 in, and the y-displacement of point 
B is 0.036 in, the normal strains in x and y are 

- 0.012 
Ax 0.02 Ay 0.036 = 0.010 & - - = - - E x = - - -  - 
x 2.0 y 3.0 Y -  
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The shear strain is defined from identifying e,, and e,, using small-angle approxi- 
mations as shown in Figure 2.3. Therefore, 

0.012 0.010 
3 .O 2.0 

e, = - = 0.004 e,, = - - - 0.005 

The shear strain is yxy = Oxy + Oyx = 0.005 + 0.004 = 0.009. Had the original right 
angle between lines OA and OB been increased instead of decreased, the shear 
strain would be negative as per the definitions of positive and negative shear strain. 

2.2.1 Strain Transformations 

Consider the undeformed two-dimensional triangle ABC shown in Figure 2.4. 
Assume that the triangle is subjected to a pure shear deformation, so points A, B, 
and C occupy positions A’, B’, and C’ in the deformed state. The deformed length 
of dL,  denoted as dL‘, is 

ax 
au av 
ax 

au av av au 
ax y -  ay  ax ’ xy - ay 

Recall that E, = -, E - -, 8, = - 8 - -, and note that 

Using these terms in the expression for dL’, expanding the equation, and neglecting 
higher order terms such as E: and &,yXy yields 

dL’ = dl + 2 ~ ,  sin2 8 + 2~~ cos2 8 - 2y,, sin 8 cos 8 dL 

Figure 2.4. Geometry and coordinate changes for pure shear deformation. 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



A Review of Stress, Strain, and Material Behavior 23 

- 
f Exf - m 2  n2 0 0  o mn 

n2 m2 o o o -mn 
0 0 1 0  0 0 

- 0  0 O m - n  0 
Yxz' 0 0 O n  m 0 

-2mn 2mn o o o m 2 - n 2  - 

This expression shows that the change in length of the original line d L  (for a pure 
shear deformation) includes extensional terms such as E ,  and E ~ .  The normal strain 
in the y'-direction (indicated in Figure 2.4) is 

d L  
dL' - d L  

EY' = 

Following the same procedure as for the normal strain (expanding in a binomial 
series) yields .syt = E ,  sin2 8 + s y  cos2 8 - yxy sin 8 cos 8. Similar expressions can 
be established for Ex! and yx9. Rotations in the x and y directions cause deforma- 
tions in other directions. The strain transformation relating strains in the primed 
and unprimed systems is 

{ } = [T , ]  { :;} 
Yxy' Y X Y  

(I) (2 .2)  

Yxz 
Y X Y  

where 
m2 n2 mn 

-2mn 2mn m 2 - n 2  
n2 m2 -mn ] 

and 
m =cos@, n = sin8 

If arbitrary rotations about any axis are allowed, a different transformation results. 
This representation is described by a more general set of transformation equations 
as presented in Appendix B, and in various texts, including Boresi and Lynn [2]  
and Dally and Riley [3 ] .  If the tensor form of shear strain is used, mn becomes 
2mn, and 2mn becomes mn, since yxy = 2sXy. 

2.3 Stress and Stress Transformations 

The positive sign convention used for stresses is shown on the three-dimensional 
representative volume element (RVE) in Figure 2.5. In this element it is assumed 
that the conditions of equilibrium have been satisfied (with txy = -tyxr etc.). Stress 
components on the hidden faces exist, but are not shown. 

For simplicity, consider the transformation of the state of stress shown in Figure 2.6 
from the x - y  system to the XI-y' system. The transformations are established by 
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Figure 2.5. Positive sign convention for a 3-0 state of stress. 

Figure 2.6. Transformation of stresses from an X - Y to an XI- Y’ coordinate system. 

assuming the element has a unit thickness t ,  and summing forces on the free body 
diagram representing the exposed x’ plane. The summation of forces in x’ yields 

C F,! = a, , ( td~)  - a,(tdy)cose - a,(tdx)sine 

- t,,(tdx) cos 8 - txy(tdy) sin 8 = 0 

Using the notation m = cos8 = (dy/dZ) and n = sin0 = (dx/dl), it is a simple 
matter to show 

a,! = axm2 + ayn2 + 2t,,mn 

Similar procedures can be followed by drawing a free-body diagram exposing 
the normal stress in the y’-direction in order to establish the complete set of 
transformation equations of stress from an x-y coordinate system to an x’-y’ 
system. The general form of this transformation is 

{“)=[To]{ :} 
G y ‘  TxY 
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- m2 n2 o o o 2mn - 
n2 m2 o o o -2mn 
0 0 1 0 0  0 
0 O O m - n  0 
0 O O n m  0 

--mn mn o o o m 2 - n 2 -  

where 
m2 n2 2mn 

-mn mn m 2 - n 2  
n2 m2 -2mn ] 

In three dimensions, the transformation from an x-y system to an x'-y' system 
(assuming all rotations to be about the z-axis only) is 

(2.4) 

A more populated transformation matrix exists if arbitrary rotations are allowed. 
The fundamental assumptions from which simple lamination theory is developed 
depend on rotations about the z-axis only. It should be noted that if the tensor 
notation is being used for strains, then the strain and stress transformations are 
related by [T,] = [Tu]. 

2.4 Stress-Strain Relationships 

The generalized form of Hooke's law relating stress to strain is {0] = [C]{E), where 
[C] is a 6 x 6 stiffness matrix. The coefficients of [C] are generally not constants. 
They depend on location within an elastic body, as well as time and temperature. 
The relationship between stress and strain through [C] is an approximation which 
is valid for small strains. For a homogeneous, linearly elastic material, the material 
properties are assumed to be the same at every point within the material, and the 
strain energy density (170) is equal to the complementary internal-energy density, 
or complementary strain energy density (CO). Through the use of energy methods 
(formulated from considerations based on the first law of thermodynamics), the 
strain energy density can be related to the stress and a subsequent stress-strain 
relationship [2]. The relationship between UO and CO for a linearly elastic material 
is shown in Figure 2.7. The complementary strain energy concept which relates UO 
to CO is generally used to relate stress to strain through the stiffness matrix [C]. 
In addition, using energy methods, it can be shown that [C] is symmetric, and 
the terms within it are related by ci, = cji. Therefore, 21 independent elastic 
constants must be determined. The entire stiffness matrix, however, contains 36 
nonzero terms. Using contracted notation, the generalized form of the stress-strain 
relationship for an anisotropic material is 

c11 c12 c13 c14 c 1 5  c16 

c 1 2  c 2 2  c 2 3  c 2 4  c 2 5  c 2 6  

c13 c 2 3  c 3 3  c 3 4  c 3 5  c 3 6  
c14 c 2 4  c 3 4  c44 c45  c 4 6  

cl5 c 2 5  c 3 5  c45 e55 c 5 6  

-c16 c 2 6  c 3 6  c 4 6  c 5 6  c 6 6  
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Figure 2.7. Relationship between Vo and Co for linear material behavior. 

The stiffness matrix [C] can be shown to be invariant. In addition to being termed 
anisotropic, this type of material behavior is also termed triclinic. This relation- 
ship does not distinguish between tensile and compressive behavior. The material 
is assumed to have the same stiffness in tension and compression. The response 
characteristics of this material, as defined by [C], show that shear and exten- 
sion are coupled. This means that even under conditions of uniaxial tension, a 
shear deformation will develop. In a similar manner, a pure shear load will create 
normal deformations. Characterization of an anisotropic material is difficult from 
an experimental viewpoint, since 21 independent elastic constants must be deter- 
mined. 

2.4.1 Monoclinic Materials 

If any material symmetry exists, the number of terms in [C] reduce. Assume, for 
example, that the x-y (or z = 0) plane is a plane of material symmetry. The effect 
of this symmetry on the stresses and strains is seen by allowing a rotation of 180” 
from the x-y coordinate system to the x’-y’ coordinate system as depicted in 
Figure 2.8. Using the strain and stress transformation equations given by (2.2) and 
(2.4), the primed and unprimed stresses and strains are related by 

Figure 2.8. Phne of material symmetry for a monoclinic material. 
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Consider the ex and ex! stress components. Using the general constitutive relation- 
ship for an anisotropic material, the stress in the primed and unprimed systems are 

In order for [C] to be invariant, these two equations must be equal, which 
can happen only if CI4 = C15 = 0. Similar procedures can be followed for the 
remaining stress components in both the primed and unprimed systems, which 
results in C24 = CZ5 = C34 = C 3 ~  = C46 = CS6 = 0. The stiffness matrix reduces 
to 13 independent elastic constants and is 

Note that extension-shear coupling exists due to terms such as Cl6. Although 
13 independent elastic constants are present in this stiffness matrix, there are 20 
nonzero terms. As the number of conditions of material symmetry increases, the 
number of elastic constants required to describe the material decreases. 

2.4.2 Orthotropic Materials 

The relationship between stresses and strains in the primed and unprimed coordi- 
nate systems for an orthotropic material can be established by allowing rotations 
of 180" from the original reference frame about the z- and X-axes. The rotations 
about the z-axis follow those of the previous section using equations (2.2) and 
(2.4). These two equations cannot be directly applied to rotations about the x-axis, 
since they were defined only for rotations about the z-axis. A more general set of 
transformations (as presented in Appendix B) is required to establish the primed 
and unprimed relations for rotations about the x-axis. It should also be noted that a 
third rotation about the remaining axis does not reduce the stiffness matrix further. 
Proceeding as in the previous case, relating the stresses and strains in the primed 
and unprimed coordinate systems, coupled with the invariance of [C], establishes 
the orthotropic stiffness matrix, expressed as 

There are 9 independent elastic constants associated with an orthotropic material 
and a total of 12 nonzero terms. In addition, there is no shear-extension coupling. 
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2.4.3 Transversely lsotropic Materials 

For a transversely isotropic material there is an axis of material symmetry (defined 
as a direction with respect to which the material has identical properties) in addition 
to three planes of symmetry. Therefore, any two material fibers having symmetrical 
positions with respect to the axis of symmetry have the same stiffness. If the z-axis 
is assumed to coincide with the axis of symmetry, the X- and y-axes can be in any 
direction (provided they remain perpendicular to each other) without altering the 
value of [C]. In this case the X - y  plane is referred to as an isotropic plane. Under 
the assumption that the z-axis coincides with the axis of symmetry, the stiffness 
matrix is - - 

c11 C12 C13 0 0 0 
c12 c11 c13 0 0 0 
c13 c13 c 3 3  0 0 0 
0 0 0 CM 0 0 
0 0 0 0 C 4 O  
0 0 0 0 0 C66, 

where 

A transversely isotropic material has 5 independent elastic constants and 12 nonzero 
terms. The form of the stiffness matrix would be different if another axis were 
chosen to represent the axis of symmetry as shown in Tsai [4]. 

2.4.4 lsotropic Materials 

For an isotropic material, all planes are planes of material symmetry and are 
isotropic. There are 2 independent elastic constants associated with an isotropic 
material and 12 nonzero terms in the stiffness matrix. The resulting stiffness matrix 
for an isotropic material is 

where 

2.4.5 Summary of Material Responses 

To summarize stress-strain relationships for anisotropic, monoclinic, orthotropic, 
transversely isotropic, and isotropic materials, we note that the form of each stiff- 
ness matrix shown previously is valid only for rotations about those axes specified. 
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The total number of independent elastic constants in each case remain the same, 
but the number of nonzero terms for each stiffness matrix changes. Stress-strain 
relationships for a variety of material property symmetry conditions are found in 
Tsai [4,5]. A summary of the number of independent elastic constants and nonzero 
terms for each material considered is presented in Table 2.1. In this table the term 
on-axis is used to indicate rotations about an axis of symmetry, while off-axis 
refers to a rotation about one of the reference axes, and general refers to rotations 
about any axis. An orthotropic material in an on-axis configuration has 12 nonzero 
terms in its stiffness matrix. If a general rotation were used for the same material 
system there would be 36 nonzero terms, as for an anisotropic material. Similar 
observations can be made for other types of materials. Even though one generally 
begins by assuming an orthotropic material response for individual lamina, the 
final laminate may behave as an anisotropic material in which extension and shear 
are coupled. 

Table 2.1. Summary of muterial symmetries (after [4]). 

Number of Number of Number of Number of Type of 
Material Independent Nonzero Terms Nonzero Terms Nonzero Terms 
Symmetry Constants (On-axis) (Off-&) (General) 

Anisotropic 21 36 36 36 
Monoclinic 13 20 36 36 
Orthotropic 9 12 20 36 
Transversely isotropic 5 12 20 36 
Isotropic 2 12 12 12 

2.5 Strain-Stress Relationships 

The strain-stress relation is obtained by inverting the stiffness matrix in the 
stress-strain relation {o) = [ C ] [ E } ,  resulting in 

{ E l  = [CI-%) = [Sl{a} 

where [SI is the elastic compliance matrix and is symmetric. The general form of 
the strain-stress relation is { E }  = [S][a}. For an anisotropic material, 

[SI = 

SI1 s12 SI3 s 1 4  s 1 5  s 1 6  

SI2 s 2 2  s 2 3  s 2 4  s 2 5  s 2 6  

s13 s 2 3  s 3 3  s 3 4  s 3 5  s 3 6  

S I 4  s 2 4  s 3 4  s44 s 4 5  s 4 6  

s 1 5  s25 s 3 5  s 4 5  s 5 5  s 5 6  

s 1 6  s26 s 3 6  s 4 6  s 5 6  s 6 6  

As various forms of material symmetry are considered, this matrix reduces in the 
same manner as the stiffness matrix. For the monoclinic and orthotropic materials 
the elastic constants above change to: 

Monoclinic: s t 4  = SI5 = s 2 4  = s 3 4  = s 3 5  = s 4 6  = s 5 6  = 0 
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Orthotropic: (all monoclinic constants) and 

Sl6 = Sz6 = s36 = s45 = 0 

The compliance matrices for transversely isotropic and isotropic materials are 

Transversely isotropic: Isotropic : 

where 
S66 = 2(sll - S121 S44 = 2(sll - S121 

2.6 Thermal and Hygral Effects 

The previously defined relationships between stress and strain are valid as long 
as temperature (thermal) and moisture (hygral) effects are not present. In many 
structural applications involving traditional engineering materials, the forgoing 
relationships would be sufficient for most stress analysis. In the case of lami- 
nated composites, however, this is not true. The effects of both temperature and 
moisture (relative humidity) on the stiffness and strength of polymeric compo- 
sites is schematically illustrated in Figure 2.9, where AM represents the change in 
moisture content (measured as a percentage). In space applications thermal effects 
can be severe. One side of a structure may be subjected to direct sunlight while 
the other is subjected to freezing conditions. This results in a thermal gradient 
within the structure and a complex state of stress. This thermal gradient may even 
by cyclic, further complicating the analysis. 

l 

Temperature 

Figure 2.9. Schematic representation of the effects of temperature and moisture on elastic 
modulus and strength. 

In addition to the effects temperature and moisture have on the modulus and 
strength, they also affect the strains. Consider a simple one-dimensional case where 
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the total strain for an elastic body is given by 

where 

[ E } ,  = elastic or mechanical strain 

[ E } ~  = thermal strain 

{ E } ~  = hygral strain 

{&},is = miscellaneous strains, such as plastic strain 

The thermally induced strains can be expressed as 

{ E } ~  = CY(AT)  

where T is the change in temperature from an initial reference temperature to a 
final operating temperature. In general the initial temperature (To) is regarded as 
the stress-free temperature, or the temperature at which no thermal stress exists. 
The final, or operating, temperature ( T )  is the temperature at which the structural 
component is required to perform, and AT = T - To. The term CY is the coefficient 
of thermal expansion and in general has different values in each direction. A simple 
means of describing CY is with subscripts, such as ai, where i = 1,2, 3. 

In a similar manner the hygral strains are expressed as 

[ElH = 

where AM is the percentage change in moisture and B is the coefficient of hygral 
expansion. As with thermal effects, the /? terms are also subscripted as pi, where 
i = 1,2 ,3 .  

The ai and 
meaning that they affect only expansion and contraction, not shear. 

terms used to describe thermal and hygral coefficients are dilatational, 

For a case in which there are no miscellaneous strains (&,is = 0),  we write { E }  = 
{ E } ,  + [ E } ~  + [ E } ~  = ( E } ,  + crAT + DAM, and the mechanical strain is 

[ E } ,  = [ E }  - CYAT - DAM 

2.7 Complete Anisotropic Response 

The complete set of governing equations for anisotropic polymeric composites can 
expressed in shorthand notation as 

Ei = S i j D j  + UiAT + BiAM (i = 1,2,3) ,  ( j  = 1-6) 
(2.5) 

= S i j ~ j  (i = 4,5,6), ( j  = 1-6) 
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where ~i is the total strain and Sijaj is the mechanical strain. In expanded matrix 
notation this equation becomes 

~ SI1 S I 2  s 1 3  s 1 4  SI5 S I 6  

S I 2  s 2 2  s 2 3  s 2 4  s 2 5  s 2 6  

s13 s 2 3  s 3 3  s 3 4  s35 s 3 6  

S I 4  s 2 4  s 3 4  s44 s45 s 4 5  

s l 5  s 2 5  s 3 5  s 4 5  s55 s 5 6  

- S I 6  s 2 6  s 3 6  s46 s 5 6  s 6 6  

ff1  

a 2  

ff3 

a 4  

ff5 

0 6  

f f 1  

ff2 

f f3  
0 
0 I 0 

The relationship above can also be expressed in terms of the stiffness matrix [C], 
obtained by multiplying the entire expression by [Si,]-'. This results in 

= C i j ( ~ j  - ajAT - BjAM) (i = 1,2,3), ( j  = 1-6) 

a i  = C ~ , ( E ,  - a,AT - B,AM) (i = 4,5,6), ( j  = 1-6) 

In these expressions we note from the previous section we can write = ( E ,  - 
crjAT - /?,AM); therefore, CJ~ = Ci,{~j}m, where { E , ) ~  is the mechanical strain. 

Example 2.3. Assume the compliance matrix for a particular material is 

[SI = 

7 11 -8 12 5 -8 
11 25 -15 25 8 -15 

-8 -15 2 -30 5 12 
12 25 -30 15 19 11 
5 8 5 19 -1 12 

.-8 -15 12 11 12 2 

1 0 - ~  

Assume the thermal and hygral coefficients of expansion are constant over the 
ranges of AT and AM of interest and are 

Using the expanded form of equation (2.5), the strains are represented as 

7 11 -8 12 5 -8 
11 25 -15 25 8 -15 

-8 -15 2 -30 5 12 
12 25 -30 15 19 11 
5 8 5 19 -1 -12 

-8 -15 12 11 -12 2 

ff1 
0 2  
ff3 
ff4 

ff5 

ff6 

0.20 hM 
0 
0 :") 0 
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Assume a state of plane stress in which the only nonzero stresses are ( ~ 1  = 20 ksi, 
02 = 10 ksi, and 06(= t12) = 5 ksi. The strains are o-(i] 210 ~ 1 0 - ~ + [ ' : )  x ~ O - ~ A T + / ' [ ] A M  0.10 

E 6  -300 

From this we observe that the shear strains ( ~ 4 ,  ~ 5 ,  &6) remain constant for any 
AT and AM values considered. The normal strains are affected by both AT and 
AM. It is also observed that even though a state of plane stress exists, the out- 
of-plane shear strains (€4 and ~ g )  are present. In order to evaluate the effects of 
AT and AM, assume they are limited to the ranges of -300°F 5 AT 5 300°F 
and 0 5 AM 5 0.10. A plot of the variation of ~1 as a function of AT and AM is 
presented in Figure E2.3. The results are seen to be linear for each case, and plots 
of either of the remaining normal strain components would also be linear (the 
magnitudes are different). These results are somewhat fictitious, since moisture 
and stiffness and compliance are coupled to temperature. 

Figure E2.3. Effects AT and AM on 61. 
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2.9 Problems 

2.1 Determine the displacement field for the following states of strain. If a strain 
component is not specified, assume it to be 0. 
(A) E, = -1000 pidin, cy = 1000 pidin, yxy = 400 p 
(B) E, = 600 pidin, E~ = -lo00 pidin, yxy = 400 y 
(C) E ,  = -500 pidin, c y  = -1000 yidin, 

2.2 Determine the deformed lengths of lines AB and CD, and the angle between 
lines after deformation. Note that lines AB and CD are perpendicular before 
deformation. Assume that the only nonzero strains on the underformed cubic 
solid are: 
(A) E, = 10,000 pidin, c y  = 20,000 pidin, yxy = 30,000 p 
(B) E, = 3000 pidin, c y  = -1200 yidin, yxy = 900 p 

yxy = -200 p 

-200 -50 0 0 0 5 0 -  
-50 150 0 0 0 50 

0 0 150 0 0 0 

0 0 0 0 1 0 0 0  
- 50 50 0 0 0 100- 

‘cl= 0 0 0 100 0 0 x 105 psi 

“ I =  

r 500 -50 50 -100 -50 50- 
-50 250 100 -100 -50 25 

50 100 125 -50 100 50 x 105 psi 
-100 -100 -50 100 100 25 

L 50 25 50 25 50 100- 
-50 -50 100 100 200 50 
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[SI = 

2.5 Use the stiffness matrix of Problem 2.3 to determine the state of strain 
for the following states of stress. The stresses for each part correspond to: 

(A) {50,25, 10,20, -10, 10) ksi 
(B) (0, 0, 0, 10, 10, 10) ksi 
(C) {-lo, 0,40,0,20, -20) ksi 

exists. The solid lines represent the undeformed state. 

(0x9 0 y 9  o z ,  Txz, t y z ,  T x y )  

2.6 A Cubic solid is deformed as shown. Determine the state of strain which 

- 7.69 4.62 0 0 0 -6.15 
4.62 10.77 0 0 0 -7.69 

0 0 6.67 0 0 0 
0 0 10.0 0 0 0 

0 0 0 0 10.0 0 
--6.15 -7.69 0 0 0 16.92 

2.7 Use the stiffness matrix of Problem 2.3 to determine the stresses required to 
produce the displacements defined in Problem 2.6 (A) under the assumption 
that x, y, z are the 1, 2, 3 directions. 

2.8 Use the stiffness matrix of Problem 2.4 to determine the stresses required to 
produce the displacements defined in Problem 2.6 (B) under the assumption 
that x, y ,  z are the 1, 2, 3 directions. 

2.9 The stiffness matrix of Problem 2.3 can be inverted to produce 

x lo-* 

The coefficients of thermal and hygral expansion are 

{ i!} = { ~ } ~ i n / i n / " F  { ii} = { O:O} 0.40 

Assume AT = -300°F and AM = 0.005. Determine the strains in the prin- 
cipal material directions for a state of stress described by the notation (01, 

(A) [lo, 5, 0, 0, 0, 51 ksi 
(B) [-lo, 10, 5,  0, 5, 101 ksi 
(C) [0, 10, 5, 0, 5, 01 ksi 

0 2 9  0 3 9  049 0 5 7  0 6 ) .  
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2.10 Assume that the material described by the compliance matrix of Problem 2.9 
is subjected to the state of stress shown. Furthermore, assume that the coef- 
ficients of thermal and hygral expansion given in Problem 2.9 remain appli- 
cable, and that AT = -300°F. On the same graph, plot ( E , ,  E Z ,  &g, &q, &g, E ~ )  

as a function of AM for 0.0 5 AM 5 0.05. 

2 ksi 

5 ksi 

10 ksi 

5 ksi 6 ksi 

t 2 ksi 

2.1 1 Work Problem 2.10 (A), (B), or (C) assuming AM remains constant (AM = 
0.005), and AT varies in the range -300°F 5 AT 5 300°F. The resulting 
plot for this problem should be in terms of AT instead of AM. 

2.12 Assume a material that has thermal and hygral properties defined as 

Furthermore, assume that these properties remain constant for all ranges of 
AT and AM considered. For a constant AT = -300"F, and 0.0 5 AM 5 
0.020, plot, on the same graph, the stress (as a function of AM) required to 
produce displacements corresponding to Problem 2.6 (A), if 
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LAMINA ANALYSIS 

3.1 Introduction 

One difference between laminated composites and traditional engineering mate- 
rials is that a composite’s response to loads is direction dependent. In order to 
analyze the response of a composite, we must be able to predict the behavior 
of individual lamina. A lamina (considered a unidirectional composite) is char- 
acterized by having all fibers (either a single ply or multiple plies) oriented in 
the same direction. This model allows one to treat the lamina as an orthotropic 
material. In reality fibers are not perfectly straight, or uniformly oriented within 
the lamina. There are generally several layers of fibers nested within a single 
lamina. The model used to represent a lamina consists of a single fiber per layer. 
In developing relations between material response and applied loads the simplified 
model is an accepted representation. A schematic of an actual and modeled lamina 
is presented in Figure 3.1. The 1, 2, and 3 axes are the principal directions of 
orthotropic material behavior, defined as follows: 

1: Principal fiber direction 
2: In-plane direction perpendicular to fibers 
3: Out-of-plane direction perpendicular to fibers 

3.2 Mechanical Response of Lamina 

In order to evaluate the response of a lamina, each component of the stiffness 
matrix [C] must be determined. The stress-strain relationships needed to define 
[C] are obtained by experimental procedures as discussed in Chapter 4. A uniform 
stress is easier to approximate than uniform strain; therefore, the stiffness matrix is 
established by first developing the compliance matrix [SI and inverting it to obtain 
[C]. The lamina is orthotropic so extension and shear are uncoupled in the principal 
material directions. The extension and shear components of the compliance are 
determined independent of each other, with uniaxial tension used to determine the 
extension components. Figure 3.2 shows the directions of normal load application 
required to establish the normal stress components of [SI in each direction. 

37 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



38 Laminar Composites 

Figure 3.1. Schematic of actual and modeled lamina. 

Figure 3.2. Schematic of applied stress for determining an orthotropic elastic compliance 
matrix. 

By application of a normal stress in the 1-direction (with all other stresses being 
zero), normal strains in the 2 and 3 directions result. There is no shear-extension 
coupling, so the relationship between each normal strain and the applied stress is 

-VI201 -VI301 
E3 = ~ 

0 1  
& I = -  & 2 = -  

El El E1 

where E1 is the elastic modulus in the 1-direction (parallel to the fibers); v12 is 
Poisson’s ratio in the 2-direction when the lamina is loaded in the 1-direction; 
and vi3 is Poisson’s ratio in the 3-direction when the lamina is loaded in the 
1-direction. 

Similarly, by application of a normal stress in the 2-direction (with all other stresses 
zero), the relationship between strains in the 1, 2, and 3-directions and the only 
nonzero applied stress component a2 is 

The strains developed with a3 as the only nonzero stress component are 

-v3103 -v32a3 a3 
E ]  = ~ E2 = ~ E3 = - 

Combining these results, and recalling that {ei) = [Sij](aj}, the extension terms are 

E3 E3 E3 
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-VI2  1 - v32 
s21 = - S22 = - S23 = - 

E1 E2 E3 

-v13 -v23 1 
S31 = - S32 = - s33 = - 

E1 E2 E3 

The elastic modulus and Poisson’s ratio can be expressed as Ei,  the elastic modulus 
in the i-direction, with a normal stress applied in the i-direction, and vi,, Poisson’s 
ratio for transverse strain in the j-direction, with a normal stress applied in the 
i-direction. 

Since the compliance matrix is symmetric, a simplifying relationship exists between 
Poisson’s ratio and the elastic moduli: 

(i, j = 1,2, 3) 3 = vji 

Ei E j  
- 

Alternatively, 
v12 v21 v13 v3l v23 - v32 

El E 2 ’ E l  E 3 ’ E 2  E3 
_ _  - - - _ -  - _ -  - 

Fibers are generally stronger and stiffer than the matrix. Therefore, El (associated 
with the fiber direction) is typically greater than either E2 or E3 (associated with 
the matrix direction). 

The relationship defined by (3.2) can be used to express (3.1) as 

-v13 -v23 1 
S31 = - S32 = - s 3 3  = - 

El E2 E3 

In addition to the normal components of the compliance matrix, the shear terms 
Sa, S55, and SM must be determined. In principle this is a simple matter, since 
there is no shear-extension coupling. By application of a pure shear on the 2-3, 
1-3, and 1-2 planes, the relationship between shear stress and strain is 

1 1 1 
G23 GI3 GI2 

sa = - s55 = - s@j = - (3.4) 

where Gij is the shear modulus corresponding to a shear stress applied to the 
ij-plane. In order to completely characterize an orthotropic lamina, nine elastic 
constants are required. Not all nine of these constants are generally determined. 
In many cases the 1-2 direction is given most of the attention, since properties in 
the 1-3 and 2-3 directions are difficult to establish. 
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3.2.1 Stiffness Matrix 

The stiffness matrix is obtained by inverting the compliance matrix. The stiffness 
matrix is, by convention, expressed as [Q] instead of [ C ] .  The form of the stiff- 
ness matrix presented in Chapter 2 for an orthotropic material is more accurately 
referred to as specially orthotropic. The stress-strain relationship for a specially 
orthotropic lamina is 

' *I 

*2 

*3 

0 4  

0 5  

0 6  

(3.5) 

The individual components of the stiffness matrix [Q] are expressed in terms of 
the elastic constants as 

Under appropriate conditions these expressions can be simplified. For example, 
the elastic moduli in the 2- and 3-directions are generally assumed to be the same 
( E 2  = E 3 ) ,  which implies ~ ~ 2 3  = ~ 3 2  and ~ 2 1 ~ 1 3  = ~ 1 2 ~ 3 1 .  Simplifications to these 
equations can be made by assumptions such as plane stress. 

The relationships between elastic constants (shear, bulk, elastic moduli, and 
Poisson's ratio), which must be satisfied for an isotropic material, place restrictions 
on the possible range of values for Poisson's ratio of - 1 < u < 1 /2. In a similar 
manner, there are restrictions on the relationships between vij and E j  in orthotropic 
materials. These constraints, first generalized by Lempriere [l], are based on 
considerations of the first law of thermodynamics. In formulating these constraints, 
both the stiffness and compliance matrices must be positive-definite. Therefore, 
each major diagonal term of both matrices must be greater than 0. This results 
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in two restrictions on elastic moduli and Poisson's ratio. They are deduced from 
equations (3.3), (3.4), and (3.6) to be E l ,  E 2 ,  E 3 ,  G23,  G13,  G12 > 0 and (1 - 
v23v32), (1 - V31v13), (1 - ~ 1 2 ~ 2 1 )  > 0. From the second of these relationships and 
equation (3.2), it can be shown that 

Six relationships are represented by this equation: 

In conjunction with these relationships, it can also be shown that 

This expression can be rearranged to show that 

In turn, this relationship can be manipulated to show that 

A relationship between v12 and the other terms in this expression can be obtained 
by further rearrangement of the preceding expression. The form of this relationship 
is, from Jones [2], 

Additional expressions involving ~ 2 3  and v13 can be formulated, but are not 
presented. These restrictions on the engineering constants for orthotropic materials 
can be used to evaluate experimental data and assess whether or not it is physi- 
cally consistent within the framework of the elasticity model developed. Numerical 
values of Poisson's ratio determined from experimental techniques may appear to 
be unrealistically high, but fit within the constraints presented [2]. 
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3.2.2 Transformation of Stresses 

Equation (3.5) is based on elastic constants for the special case of the x-axis 
coinciding with the 1-axis of the material (an on-axis configuration). In this 
arrangement the x (1)-direction is associated with the maximum lamina stiffness, 
while the y (2)-direction corresponds to the direction of minimum lamina stiffness. 
It is not always practical for the x-axis of a lamina to correspond to the 1-axis of 
the material. An orientation in which x-y and 1-2 do not coincide is an of-axis 
configuration. Both configurations are illustrated in Figure 3.3. 

Figure 3.3. On- and off-axis configurations. 

The on-axis stress-strain relationship of equation (3.5) is not adequate for the 
analysis of an off-axis configuration. Relating stresses and strains in the x-y 
system to the constitutive relations developed for the 1-2 system requires the use 
of transformation equations (2.2) and (2.4) (repeated here in abbreviated form): 

{I;} = [TEI { ; y }  {I;} = v u 1  { ;} 
From equation (3.5) and the stress and strain transformations just shown, the 
principal material direction stress components in terms of Cartesian strain compo- 
nents are 

{ ::} = [Ql {I:} = [Ql[TE1 { I:y} 
Cartesian and principal material direction stresses are related by 

{ Z }  = [Tul-' {I;} 
The Cartesian stress-strain relationship can be written as 

{ 4x } = [TuI-'[QIITEI { ::y} 

TXY 
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This expression can be simplified by defining a new matrix [GI, where 

@I = [~oI - ' [QI [~61  

The expanded form of the Cartesian stress-strain relationship is 

' E x  

EY 
EZ 

YYZ 
Yxz 

' Y x y  

The orthotropic material response of equation (3.7) appears to be different from 
the specially orthotropic response of equation (3.5) because of the reference system 
chosen to define the material behavior. In Chapter 2 (Table 2.1), the number of 
independent elastic constants and nonzero stiffness matrix terms for an orthotropic 
material were presented. Comparing equations (3.5) and (3.7), it should now be 
easier to see the relationship between a material response and a selected refer- 
ence axis. The same behavior is predicted by both equations (3.5) and (3.7). The 
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difference between them is the reference system used to define the response. Although 
there are still only 9 independent elastic constants represented by equation (3.7), 
there are 20 nonzero terms in the stiffness matrix. The material response defined 
by equation (3.7) is termed generally orthotropic. The material response previously 
termed specially orthotropic is typically reserved for on-axis cases in which there is 
no shear-extension coupling. 

The development of equation (3.8) follows directly from the transformation equa- 
tions in Chapter 2. From examining the terms associated with each Qi, it is evident 
that coupling between sin8 and cos8 terms exists. Figure 3.4 shows the sign 
convention for which equation (3.8) is valid. Although it will generally not affect 
most terms of the [D] matrix, a mistake in the positive or negative sense of 8 
can influence the shear terms (&,&,e36, and Q45). In some texts a positive 
angle 8 is measured from the principal material axis (1) to the x-axis. For our 
development this would cause the n (sin8) term in equation (3.8) to be negative, 
thus causing a sign change. Although the sign of the shear stress generally does 
not affect the shear failure strength of a lamina, it does have an effect on other 
stress components. 

Figure 3.4. Sign convention of positive and negative M e r  orientations. 

3.23 Plane Stress Analysis 

For plane stress, equations (3.5) and (3.7) reduce since one normal and two shear 
components of stress are zero. As in the case of an isotropic material, the elimi- 
nation of stress components does not imply that strain components become zero. 
Either the stiffness or the compliance matrix can be used for plane stress analysis. 

3.2.3.7 Stiffness Matrix 
In the case of plane stress we assume that in the material coordinate system 
a3 = a4 = a5 = 0. The stiffness matrix for plane stress is termed the reduced 
stifSness matrix. The on-axis form of the reduced stiffness matrix is similar to the 
[Q] of equation (3.5) and is 

[Ql=[;: iz :] (3.9) 
Q66 

where the individual terms are 
E 2  

1 - v12v21 
Q22 = 

E l  

1 - v12v21 
Q i i  = 
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V12EZ - VZIE1 
QIZ = - Q66 = GIZ 

Although both out-of-plane shear strains are zero for this case, the normal strain 
( ~ g )  exists and is easily derived from equation (3.5). 

The off-axis form of the reduced stiffness matrix contains out-of-plane strains. 
Both normal ( E , )  and shear strains (yxz and yxz) may be present under the plane 
stress assumptions of a, = txz = zyz = 0. These shear strains are not generally 
included for in-plane analysis. In some cases these terms are included, but are 
separated from the in-plane portion of the analysis. Beam, plate, and shell prob- 
lems formulated from a displacement field approach generally include these terms. 
Such formulations are considered advanced topics and are not addressed in this 
text. The off-axis form of the reduced stiffness is formulated using the stress and 
strain transformations of Chapter 2 along with equation (3.9). Following the same 
procedures as before results in 

{; 1 = [ - elz D22 ez6] { 2 1 
where the corresponding terms from equation (3.8) remain applicable for the plane 
stress case given by equation (3.10). 

The variation of each component of [e] with 0 is illustrated in Figure 3.5 for 
a carbodepoxy lamina. Although ell and az2 are the dominant terms for all 
fiber orientations, all components of [e] contribute to defining the overall material 
response characteristics. 

1 - v12vz1 1 - v12v21 

- 
Q I I  0 1 2  e l 6  

(3.10) 
TXY Q16 &6 e 6 6  YXY 

Figure 3.5. Variations of [@I with e for a carbon/epoxy lamina. 

3.2.3.2 Invariant Form of a 
The components of [e] in equation (3.10) can be expressed in a form different from 
equation (3.8). This alternate representation is known as the invariant form of [e] 
and was first introduced by Tsai and Pagano [3]. In order to establish the invariant 
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forms of [D], recall the trig identity cos2 8 = (1 + cos 28)/2, and the similar one 
for sin2 8. Using these yields 

cos4 e = (3 + 4 COS 28 + COS 4)/8 

sin4 8 = (3 - 4 cos 28 + cos &)/8 

sin 0 cos3 0 = (2 sin 28 + sin 4)/8 

cos 0 sin3 e = (2 sin 28 - sin 48)/8 

sin2 8 cos2 0 = (1 - cos 4)/8 

Evaluating ell from equation (3.8) and using these trig functions results in 

- Qii Q12 + 2Qss 
8 

ell = ( 3 + 4 ~ 0 ~ 2 0 + ~ 0 ~ 4 e ) -  +2(1 -COS&) 
8 

This expression, as well as similar expressions for the remainder of the [GI matrix 
can be simplified. The following definitions are introduced 

ui = :[3&ii 4- 3Q22 4- 2Q12 4- 4Q661 

u2 = 4 [QI 1 - e221 

u3 = {[ell + Q22 - 2Q12 - 4Qssl 

u4 = {[Qii + Q22 + 6Q12 - 4Qal  

US = $[ell + Q22 - 2Q12 + 4Qal  

(3.11) 

The explicit form of [D] can now be expressed as 

( e l l  I rul  cos28 c o s 4  1 
e 2 2  U1 -cos20 COS@ 

u4 0 
us 0 - cos 48 
0 sin28/2 sin48 

(3.12) { = 

I L," , 
This expression for [Dl provides an alternate representation for several terms 
in equation (3.8), but does not prove the invariance of any parameter in equa- 
tions (3.11) or (3.12). In order to prove that some of these quantities are invariant 
(meaning they do not depend on fiber orientation), we examine the U1 term. 
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Initially it is assumed that an off-axis configuration is being investigated. In the 
off-axis configuration U1 is expressed as U’,, and [Q] is replaced by [D]. There- 
fore, u’, = (3Q11 + 3e22 + 2D12 + 4&)/8. Substituting the appropriate expres- 
sions for each [a] term from equation (3.12) and simplifying leads to U’, = 
(6U1 +2U4 + 4 U ~ ) / 8 .  Substituting the expressions for 7-71, U4. and 7-75 from 
equation (3.11) into this equation yields U{ = (3Ql1 + 3Q22 + 2Q12 + 4Q66)/8. 
This is the expression for 7-71 given in equation (3.11). Therefore, U1 is invariant, 
which means that it does not change with the orientation of the lamina. In addi- 
tion, it can be shown that 7-74 and U S  are also invariant. Similarly, it can be shown 
that U5 = ( U ,  - U4)/2. The primary advantage of expressing the components of [e] in invariant form is that it can lead to simplifications in the design process, 
since several terms which do not vary with orientation are involved. Consider, for 
example, the el, term, which can be expressed as 

- 
Q , ,  = U1 + U ~ C O S ~ @ + U ~ C O S ~ O  

This term can be decomposed into its components, with each plotted as a function 
of 6. As seen in Figure 3.6, the total response of [D] is linked to two components 
that vary with 6 and one that is invariant. The usefulness of the invariant form of [e] becomes more evident when laminate analysis is considered. 

Figure 3.6. Components of Ql1. 

3.2.3.3 Compliance Matrix 
As with the stiffness matrix, the compliance matrix reduces for cases of plane 
stress. The strain-stress relationship for an on-axis configuration is 

{ Z:}= [i;; i;; q { :;} (3.13) 
Y12 0 s66 t12 

where each component is expressed in terms of the elastic constants as 

(3.14) 

Following transformation procedures similar to those for establishing [D], it can 
be shown that the off-axis strain-stress relationship for a case of plane stress is 

{ :; 1 = [ :;; 322 .I { 2 1 

1 ---VI2 - -V21 1 1 
SI1 = - SI* = - - - s 2 2 = -  s66=- 

El El E2 E2 Gl2 

- -  
SI2 316 

(3.15) 
Y X Y  SI6 326 366 ‘XY 
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Figure 3.7. Off-axis lamina subjected to uniaxial tension. 

-u1 cos20 cos48 - 
U1 -cos26 cos40 1 
u4 0 -c0s48 {E;} (3.18) 

0 sin20 2sin40 
- 0 sin20 -2sin40, 
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This lamina is subjected to an applied stress a,. The strain in the direction of 
loading (E, )  is to be monitored during loading. The strain and stress for this case 
are related by 

- 
From this it is apparent that E, = Slla,. From the definition of elastic modulus, 
we write ax = Ex&,. For the apparent engineering modulus in the x-direction, the 
preceding expression can be written as 

Using the definitions of S I ] ,  S12, etc., this expression is written as 

1 ---+ m4 m n + -  2 2 n4 
E1 (Gl12 ::) E2 

_ -  
EX 

Following similar procedures, one can relate the apparent engineering constants in 
an off-axis configuration (E,, E,, etc.) to on-axis material properties by loading a 
lamina in its nonprincipal directions. The following expressions result: 

(3.19) 

qxy,x = E,[Clm3n - C2mn3] 

qXy,, = E,[Clmn3 - C2nm3] 

The q's are called coeficients of mutual injbence, credited to Lekhniski [4], and 
are defined as follows: 

q i , i j  = coefficient of mutual influence of the first kind, which characterizes 
stretching in the i-direction caused by shear in the ij-plane, and can be 
written as 

or tij = t Ei 

Yi j 
q . . .  - - f 

1 , I J  - 
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q i , , j  = coefficient of mutual influence of the second kind, which characterizes 
shearing in the ij-plane caused by a normal stress in the i-direction, and 
can be written as 

Yi j 
E i  

q . .  . - - f or ai = o 
I J , I  - 

The coefficients of mutual influence are not frequently used in classical lamina- 
tion theory, but are useful in relating out-of-plane shear strains to in-plane shear 
and normal stresses. These relationships are generally presented in terms of coeffi- 
cients of mutual influence and Chentsov coefficients. The Chentsov coefficients are 
expressed as pjj,k[ and characterize shearing strain in the ij-plane due to shearing 
stress in the kl-plane. Mathematically, they are defined as 

Yi j 
pij,kl = - 

ykl 
for t k [  = t, with all other stress components being zero. The Chentsov coefficients 
are subject to the reciprocal relationship 

p i j , k l  p k l , i j  

Gkl Gij 
- 

The relationship between out-of-plane shear strains and in-plane stress components 
for the 1-3 and 2-3 planes is 

Similar representations can also be developed by solving equation (3.7) for strains 
under conditions of plane stress. The most widely used relationship in equa- 
tion (3.19) for apparent engineering constants is generally the one for E,, which 
is valuable in establishing material constants. 

Example 3.1. Consider the case of uniaxial tension shown in Figure E3.1- 1. For 
this problem the strain-stress relationship is 

_ _ _  
s 1 2  s16 { : 1 = [ _ _ _  5:: 522 .] {;o} 

Y X Y  SI6 s26 s 6 6  

Therefore, 

Ex = 312oO = [(SI1 + s22  - S66)m2n2 + S12(m4 + n 4 ) h  

= 3 2 ~ 0  = [s1ln4 + ( 2 ~ ~ 2  + s66)m2n2 + 
- 

y x y  = S26oO = [(2Sll - 2s12 - s66)mn3 - (2s22 - 2s12 - &)m3n]Oo 

From these equations it is obvious that there is shear-extension coupling for any 
angle of 8 other than 0" or 90". Even under a simple uniaxial load, the deformation 
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Figure E3.1-I. Off-axis lamina. 

will be similar to that of a state of stress including shear. Assume specimen dimen- 
sions as shown in Figure E3.1-1, 00 = 50 ksi, 8 = 45", and material properties of 
EI  = 25 x lo6 psi, E2 = 1 x lo6 psi, G12 = 0.5 x lo6 psi, and 1112 = 0.25. This 
results in 

1 1 
E1 E2 

SI1  = - = 4 x lo-8 s 2 2  = - = 1 x 10-6 

1 
(312 

SI2 = -v12SLI = -1 x lo-* s66  = - = 2 x lop6 

At 8 = 45", sine and cosine terms are identical (m = n = 0.707). Therefore, 

EX = 31200 = [0.25(Sll + s 2 2  - S66) + (0.25 f O . ~ ~ ) S ~ ~ ] C J O  

= -2.45 x 10-~~, ,  

= 7.55 x 1 0 - ~ 0 ~  

= -4.8 x 1 0 - ~ 0 ~  

- 
E y  = S2200 = [0.25Sll + O.25(2S12 + S66) + 0.25s22100 

- 
yxy = S2600 = [O.25(2311 - 2s12 - s66) - O . Z ( Z S 2 2  - 2s12 - &)]OO 

Since 00 = 50 ksi, 

I, = -0.01225 idin c y  = 0.03775 idin yxy = -0.024 idin 

The displacement field is obtained from the definitions of axial and shear strain as 
follows: 

a u  
ax ax 
a v  a v  
aY aY 
a u  a v  
ay ax 

&, = - --+ &, = - au - - -0.01225 --+ U = -0.01225~ + f (y )  

c y  = - + cy = - = 0.03775 ---+ V = 0.03775~ + g(x) 

y.y = - + - --+ f'(y) + g'(X) = -0.024 
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The functions f (y)  and g(x) can be abitrarily assumed in order to fit the anticipated 
displacement field. Since the theory developed herein is for small deformations, 
linear functions are assumed. Therefore, 

f ( Y )  = c1+ C2Y g w  = c3 + c4x 
Taking the partial derivative of each function with respect to its variable yields 
f'(y) = C2 and g'(x) = C4. Thus, according to the definition for shear strain, 
CZ + C4 = -0.024. This results in 

U = -0.01225~ + C1 + C2y V = 0.03775~ + C3 + C ~ X  

At the center of the plate ( x  = y = 0) the displacements must vanish, so that U = 
V = 0. Using this condition we arrive at C1 = C3 = 0. The rigid body rotations 
are eliminated by the requirement that 

= o +  c2=c4 
au av 
ay ax 
_ - _  

Thus, C2 = Cq = -0.012, and the displacement fields become 

U = -0.01225 - 0.012~ V = 0.03775~ - 0.012~ 

An exaggerated plot of the deformed shape for fiber orientations of both 45" and 
30" is shown in Figure E3.1-2. These plots illustrate the effects of shear-extension 
coupling on the deformation. The actual deformation field which results depends 
on applied loads, elastic properties of the material, and fiber orientation. This 
dependency of load, material, and orientation extends from deformations to stress 
analysis. In the case of laminates in which each ply can have a different fiber 
orientation (or even be a different material), the coupling between load, material, 
and orientation is even more pronounced. 

Figure E3.1-2. Deformed shape for 9 = 45" and 30". 

Example 3.2. Assume the clamp shown in Figure E3.2-1 is constructed from a 
unidirectional composite with elastic properties El = 30.3 x lo6 psi, E2 = 2.8 x 
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lo6 psi, Glz = 0.93 x lo6 psi, and u12 = 0.21. The compressive force at points B 
and C of the clamp is 1.5 kip, and screw ED can only experience a tensile force. 
For this problem we will establish the displacement field corresponding to point 
F, located on plane a-a of the clamp. Thermal and hygral effects are neglected. 
The fiber orientation is defined in Figure E3.2- 1. 

Figure E3.2-I. Composite clamp assembly. 

The loads acting on section a-a are established by defining an appropriate free- 
body diagram (FBD). Two possible FBDs can be used, as shown in Figure E3.2-2: 
one for portion AC of the clamp, or one for portion AB. In either case the unknown 
tensile force in the screw must be determined. 

Figure E3.2-2. Possible FBDs for the composite clamp. 

Either FBD will work for defining the screw tension FD, which is required to 
define the loads at section a-a. The FBD for the upper portion of the clamp, in 
which section a-a has been exposed and the internal forces and moments acting 
on it are correctly modeled, is shown in Figure E3.2-3. From this figure it is easy 
to see that four unknowns exist. The normal and shear forces at a-a, as well as the 
internal moment at a-a, and the screw tension FD. Since there are four unknowns 
for this 2-D model, the internal loads at section a-a cannot be established via the 
methods of statics. Therefore, FD must be determined. Arbitrarily using the FBD 
for portion AB from Figure E3.2-2 the tensile force FD can be defined by taking 
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moments about point A 

From the FBD of Figure E3.2-3, the internal forces and moments at section a-a 
can be established from 

CFx = 0 =  -V 

F y  = 0 = N + 1.5 - 3.5 - N = 2.0 kip 

E M  = 0 = M + 7(1.5) - 3(3.5) + M = 0 

Figure E3.2-3. FBD for internal reactions at section a - a. 

Since the internal moment and shear on section a-a are both zero, the only stress 
component to be considered is a,,, which is easily defined by the compressive 
force (N) divided by the cross-sectional area of the clamp 

-2.0 
(0.75)(0.75) 

ay = = -3.55 ksi 

The state of stress at point F of the cross-section is shown in Figure E3.2-4. Due 
to the loads on section a-a this state of stress would be identical for all points 
along plane a-a. Furthermore, due to the geometry of the clamp, this state of stress 
would exist at any point within the vertical section of the clamp, provided stress 
concentrations due to fillets are neglected. 

Figure E3.2-4. State of stress at point F of the composite clamp. 

Having established the state of stress at point F, the resulting displacement field 
can be defined. Since displacements are required, the compliance matrix relating 
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strain to stress must be defined. The relationship between strain and stress is 

where the values of [SI are determined from equation (3.16) to be 512  = 
-0.1328 x 322 = 0.2399 x and 326 = 0.2857 x Therefore, 

-0.1328 
0.2399 { :y 1 = { 0.2857 

x 10-6(-3.55 x lo3) = 

Using the procedures of the previous example, the displacement fields are found 
to be 

U = (471.4~ - 507.1~) x V = (-507.1~ - 851.6~) x 

These numerical results would be different had another material and/or a different 
fiber orientation been used. For example, a fiber orientation of 8 = +60", instead 
of -60" results in 

47 1.4 

{ } = { -851.6) pidin 
Y x y  +60 1014.2 

Since only the shear term ( 3 2 6 )  changes sign in going from -60" to +60", yxy 
is the only affected strain. This sign change is reflected in the displacement field, 
which would be 

U+60 = (471.4~ + 507.1~) x V + a  = (-507.1~ + 851.6~) x 

Example 3.3. Assume a 72-in diameter, closed-end pressure vessel is designed 
to operate under an applied pressure of 100 psi. A unidirectional composite rein- 
forcement is to be circumferentially wound around the vessel at selected intervals 
along the span. Due to space limitations the reinforcement has a cross-sectional 
area of 0.50 in2. The vessel is shown in Figure E3.3-1. Two materials are consid- 
ered for the reinforcement. We wish to define the reinforcement spacing (s) as a 
function of the arbitrary fiber orientation angle 8, assuming that the reinforcements 
sustain all forces typically expressed as the circumferential stress in the vessel. In 
addition, the normal strain in the circumferentail direction is not allowed to exceed 
6000 pidin. The two materials selected have the following elastic properties 

Property Material 1 Material 2 

E ]  (lo6 psi) 30.3 8.29 
E2 (lo6 psi) 20.80 2.92 
Gl2 (lo6 psi) 0.93 0.86 
V I 2  0.21 0.26 

A relationship between internal pressure, stress in the reinforcement, and its spacing 
can be established using the FBD shown in Figure E3.3-2. 
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Figure E3.3-1. Schematic of composite reinforced pressure vessel. 

Figure E3.3-2. FBD for reinforced pressure vessel. 

The stress in the reinforcement is denoted as a,. The reinforcement is subjected 
to the uniaxial state of stress depicted in Figure E3.3-2. The fiber orientation is 
assumed to be arbitrary, and may be either positive or negative. Summation of 
forces in the x-direction results in 

C F,  = 0 = 2g,(A) - P(6)(12)(~) = 2ax(O.50) - 100(72)(~) 

From this we establish the relationship between reinforcement stress and spacing 
as a, = 7200s. There are two possible approaches to solving this problem. Either 
by using the stiffness matrix or the compliance matrix and solving one of the 
following sets of equations 

6000 6000 { 5) = [D] { ;:y } x 10-6 or { ;:y } x 10-6 = [SI { 5 )  
A solution involving the stiffness matrix requires evaluation of E~ and yxy. If 
the compliance matrix is used, the solution is forthcoming without an interme- 
diate determination of strains. This is a result of the constraint E, = 6000 pidin. 
Had a more rigerous constraint been involved, such as specific limits on E~ and 
yxy, the solution involving stiffness may have been more appropriate. Using the 
compliance matrix we establish 6000 x 1O-6 = slla, = s11(7200s). Solving this 
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equation for s, 
8.33 x 10-7 

S =  - 
SI1  

Since only 311 is involved in the solution, the sign of the fiber orientation in the 
reinforcement does not influence the solution. This would not have been the case 
if additional constraints on cy and yxy had been imposed, since shear-related terms 
of both the compliance and stiffness matrices depend on the sign of the fiber- 
orientation angle 8. An abbreviated table of fiber spacing, angle, and sll for each 
material is presented below. 

Angle (e) Material 1 Material 2 
- 
S11(x10-6) s (in) S l l (x10-~)  s (in) 

0 0.033 25.20 0.121 6.90 
30 0.239 3.47 0.295 2.82 
45 0.363 2.29 0.391 2.13 
60 0.402 2.07 0.406 2.05 
90 0.357 2.33 0.343 2.43 

These results are presented in graphical form in Figure E3.3-3. It is easy to see 
that as the fiber angle increases either material can be used with approximately 
the same reinforcement spacing. At smaller angles material 1 proves better (with 
a larger required reinforcement spacing), since its stiffness in the l-direction is 
more that three times larger that that of material 2. 

Figure E3.3-3. Reinforcement spacing as a function of fiber orientation. 

3.3 Thermal and Hygral Behavior of Lamina 

A lamina subjected to temperature and moisture changes will deform. The matrix 
is generally more susceptible to thermal (temperature) and hygral (moisture) defor- 
mations than the fiber. Neither constituent (fiber or matrix) is allowed to undergo 
free thermal and/or hygral expansion, so their responses are coupled and the entire 
lamina behaves orthotropically. Composites are often exposed to environments 
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in which their temperature and moisture content vary with time. The variation 
of temperature and moisture within an orthotropic lamina is direction depen- 
dent. Assuming an arbitrary direction (x) within the lamina, basic thermodynamic 
considerations define the flux as 

aG 
qx = -Kx- 

ax 

where q, is the flux (either thermal or moisture) per unit area per unit time in 
the x-direction, K, is the thermal conductivity or moisture diffusion coefficient 
in the x-direction, and aG/ax is the gradient of temperature or moisture in the 
x-direction. The quantities q, and k, are often given superscripts of T or H to 
identify them as thermal or hygral parameters, respectively. The gradient G is 
generally replaced by either T or H, as appropriate. The thermal conductivity and 
moisture diffusion coefficients in the matrix directions (2- and 3-directions) are 
generally equal (KT = KT and KF = KY). The governing equation for heat flow 
is developed by an energy balance using the 1-dimensional model in Figure 3.8. 

Figure 3.8. One-dimensional heat flow model. 

The increase in energy stored per unit time within the representative volume 
element of Figure 3.8 is pc(aT/at)dx, where c is the specific heat, p the mass 
density of the material, and r is time. A simple energy balance requires 

4;- [ q : + ( z ) d x ]  = P c ( g ) d x * - ( g )  = p C ( $ )  

Using the definition of 4,' above yields aq:/ax = @/ax) [-KT(aT/ax)]. If K,', p. 
and c are constant 

aT 

- ax = [f ]  (g) (3.20) 

The K;/pc term is the thermal diffusivity, and is a measure of the rate of tempe- 
rature change within the material. 

3.3.1 Thermal Stress-Strain Relationships 

In considering the effect of temperature on the stresses and strains in a lamina, the 
thermal conductivity and/or heat flux are not considered once the temperature has 
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reached an equilibrium state (i.e., it has stabilized and is no longer increasing or 
decreasing). Since a lamina (or laminate) is cured at a temperature that is generally 
above the operating temperature, thermal stresses may be present in the lamina 
prior to application of loads. 

The general form of this stress-strain relationship for a lamina in which tempe- 
rature effects are considered was presented in Section 2.7 as 

where a, is the coefficient of thermal expansion in the j-direction, and AT is 
the temperature difference (T - To) from the operating (T) to the stress free (or 
curing) temperature (T,). 

The coefficients of thermal expansion in a lamina are direction dependent, and 
in the principal material directions are a l ,  az, and a3. The subscripts denote the 
material direction in which each coefficient is applicable. There is no shear coef- 
ficient in the principal material direction due to thermal expansion since it is a 
dilatational quantity associated with volume change. The stress-strain relation- 
ship given by equation (3.5) must be appended to account for thermal expansion, 
and is expressed as 

This relationship is valid only for on-axis configurations. In an off-axis contig- 
uration, the coefficients of thermal expansion are expressed in a different form. 
Consider a lamina subjected to thermal strains in the principal material directions, 
which are E: = a,AT. Using the strain-transformation matrix in equation (2.2) the 
relationship between thermal strains in the material and x-y coordinate systems is 

The thermal strains in the x-y coordinate system are expressed as 
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Computing LT,]-', and multiplying through by each a iAT term, the thermal strains 
in the x- v system are 

where the coefficients of thermal expansion in the x - y  system are 

ai = a3 

a,, = 2 mn(a1 - a2) 

The term a,, is called the apparent coefficient of thermal expansion. 

The stress-strain relationship for Cartesian components of stress and strain given 
by equation (3.7) must be appended to account for thermal strains, and is 

For the case of plane stress. the on-axis in equation (3.21) and off-axis in equa- 
tion (3.23) stress-suain relationships reduce to 

(3.24) 
0 0 Q64 

for the on-axis representation, and for the off-axis representation 

3.3.2 Hygral Effects 

The equation for moisture diffusion is derived from a mass balance similar to 
the energy balance for temperature. The moisture diffusion process applicable to 
a variety of composite material systems is termed Fickian diffusion and follows 
Fick's law. In general, low temperatures and humid air promote Fickian diffusion, 
while high temperatures and immersion in liquids cause deviations from it. The 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



Fickian diffusion process is a reasonable approximation for many composites. The 
moisture diffusion equation for a one-dimensional problem is 

If K! is constant, this relationship reduces to Fick's law, given as 

Comparing thermal and hygral diffusion parameters (K: for hygral and K:/@ for 
thermal) shows the rates at which moisture and temperature change within a mate- 
rial. Over a large range of temperatures and moisture concentrations encountered in 
many composite materials applications, the two parameters can be approximately 
related by K:/@ X 1O6K?. In problems coupling temperature and moisture, the 
lamina reaches thermal equilibrium before hygral equilibrium, and although no 
temperature gradient exists, a moisture gradient may. 

The moisture concentration is generally replaced by the specific moisture concen- 
tration, defined as M = H j p .  Using this definition of M to represent the hygral 
term ( H )  in Fick's law, it can be rewritten as 

The subscript x has been dropped from K ,  with the understanding that diffu- 
sion occurs in the X-direction. The boundary conditions required to solve this 
equation are 

where h is the lamina thickness and t is time. The solution to equation (3.26) using 
the boundary conditions just given is expressed as a series: 

M - M U  ==--c-- 4 ,  1 ( 2 j  + l)irxe-v 
sin (3.27) 

M, - MO i r .  2 j + l  ,=Q 
h 

where 

Mu = initial moisture content 

M, = equilibrium moisture content 

The equilibrium moisture content is generally higher than the initial moisture 
content for a moisture absorption test. The converse is true for moisture desorption, 
and equation (3.27) is also valid for that case. In a typical moisture absorption 
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test, specimens are subjected to specified relative humidities and temperatures and 
frequently weighed to determine moisture content. The average moisture content 
M is defined in terms of the moisture content M as 

Substituting M from equation (3.27) into this equation and noting that = MO at 
time t = 0, and M =M, at time t = W, yields 

where y is defined as before. For large times t this expression can be approximated 
by the first term of the series as 

For short times the approximation is given by an alternate expression from Tsai 
and Hahn 151 as 

In the initial phase of moisture absorption the moisture content changes as a simple 
function of @ (where f is time of exposure), while it becomes an exponential 
function at later times. The diffusion coefficient KH must be determined in order to 
use either relationship. This coefficient is determined through moisture absorption 
tests conducted over long periods of time. A schematic of a complete moisture 
absorption test is shown in Figure 3.9, where moisture content is plotted against 
d. The value of a is obtained by weighing specimens at various times during 
the test. Using equation (3.30) and two different values of M in the linear region, 
K" can be determined to be 

The diffusion coefficient can also be determined from the long-time approximation. 
It is assumed that the long-time absorption equation applies when the moisture 
content has reached 50% of M,. By setting (H - Mo)/(M, - MO) = 112 in the 
long-time equation, the time to reach 50% of M, is determined, from which we 
get KH = 0.04895hz/f1/2. 

The equilibrium moisture content (M,) depends on environmental conditions and 
can be expressed in terms of the relative humidity as 
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- 
h - 6  4V--Mo)@ slope = - 
&-.i;;= h45 

- 
Jt 

Figure 3.9. Determination of K" from M vs ,I% h al temperature T,. 

where 4 is the relative humidity in percent, and a and b are experimentally deter- 
mined material constants. The amount of data available regarding these constants 
is limited, but approximate values of a and b for selected composite material 
systems are found in Tsai and Hahn [S] and Tsai [6]. The equilibrium moisture 
content and the rate at which it is reached vary from material to material, and to 
a large extent is controlled by the matrix. This is illustrated in Figure 3.10, which 
shows a moisture absorption profile for graphite fibers in both epoxy and PEEK 
[poly (ether ether ketone)] matrices at 95% RH and 160°F 171. As seen here the 
graphitelepoxy system reaches an equilibrium moisture content of 2.23%, while 
the graphiteIPEEK system has an equilibrium moisture content of only 0.15%. 
Since the fiber is the same in both materials, one concludes that the matrix is 
dominant in moisture absorption. 

*-.-.--.-...AC - 

- 
-a- graphitelepoxy 
4 graphite1PEEK - 

- 
A - ..... 

~ l ~ ~ ~ , l i ~ ~ , l ~ ~ L ~ T a , ~ , Y ~ ~ , , l , ~ A , t  
0 50 100 150 200 250 300 350 400 450 500 550 600 

Time (hours) 

Figure 3.10. Moisture absorption of gmphite/epoxy and gmphite/PEEK composites al 
95% RH and 160°F (ofler 171). 

The previously established relationships for K" do not reflect the actual behavior 
of the diffusion coefficient. which is highly dependent on temperature and can 
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be represented by K" = K;e-&dIRT, where K t  is a pre-exponential factor, Ed is 
activation energy, R is the gas constant I1.987 caV(mol-K)], and T is temperature. 
Both K! and Ed are material properties. Most of the parameters considered in 
the preceding discussion are obtained through experimental techniques. Springer 
[S-101 is a good reference for further information regarding moisture diffusion 
and the general effects of environment on composites. Tsai and Hahn [ 5 ]  present 
the moisture properties for a limited number of materials. 

3.3.2.1 Hygral Stress-Strain Relationships 
Stresses resulting from hygral effects are analogous to those due to thermal effects. 
In order to assess hygral stresses, the hygral strains (sometimes termed swelling 
strains) must be considered. Prolonged exposure to moisture results in a weight 
gain and volume change for many composite materials. The weight gain is due to 
moisture absorption. The corresponding volume change results in strains (swelling 
strains) expressed in terms of the moisture content as 

where M is used in place of AM (moisture change) from equation (2.5). The 
swelling coefficient p is direction dependent in the same manner as the thermal 
expansion coefficient and is determined by a moisture absorption test of a unidi- 
rectional composite of thickness h subjected to the same relative humidity 4 on 
both sides. Frequent measurements are made to determine the amount of swelling 
as a function of moisture content. The stress-strain relationship applicable when 
hygral effects are considered was given in Section 2.7 as 

The hygral strains in both on-axis and off-axis configurations are 

Only principal material directions are affected by moisture absorption in an on- 
axis configuration. On-axis swelling strains can be transformed into off-axis strains 
in the same manner as the thermal strains were. In the off-axis configuration the 
swelling coefficients are 

where B,, is termed the apparent coefficient. 
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Hygral strains are given in terms of M, which is a gradient. The time required 
to reach equilibrium is slower for moisture than for temperature, so the moisture- 
induced strains are more variable through the thickness than thermal strains. In 
order to eliminate the problem of defining a moisture gradient, we assume that 
M can be replaced with the average moisture content M, obtainable from either 
equations (3.29) or (3.30). as appropriate. Including moisture in the stress-strain 
relationship for an on-axis configuration and appending equation (3.21) yields 

For the off-axis configuration the appended form of equation (3.23) becomes 

For the special case of plane stress, the on-axis form of the stress-strain relation- 
ship reduces to 

The off-axis form of the stress-strain relationship for plane stress is 

In a state of free thermal andlor hygral expansion (or contraction) where {a) = 0, 
the lamina strains (either on-axis or off-axis) can be represented as 

There are no stresses associated with this state of strain, since a stress is not 
applied. Now consider the one-dimensional case shown in Figure 3.1 1. The rigid 
walls impose a constraint on free expansion such that the overall deformation in 
the y-direction is zero. This causes E, = 0, while E, and y,, may exist. In order 
for the constraint of E,  = 0 to be valid, a stress U, is imposed on the lamina by the 
wall. This stress is the thermal (or hygral) stress and can he expressed in terms of 
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aAT or BM from equation (3.35) by setting the normal strain E,  = 0. The stress 
components a, and r,, would be zero, since there are no constraints restricting 
deformations associated with these stresses. 

Free thermal expansion 

End mnsminn 

Thermal stresses 

Figure 3.11. Sche& of consfrainls producing one-dimensional thermal stresses. 

Residual stresses from curing do not exist for flat lamina where only free thennal 
expansion or contraction is possible. Individual lamina do not generally have 
residual stresses from curing, but a laminate (composed of several lamina) does. 
This results from the varying expansion coefficients through the thickness. Since 
each lamina may have a different expansion coefficient, it will not deform exactly 
like an adjacent lamina. Because of compatibility between lamina, a deformation 
constraint is placed on each lamina, resulting in a stress. 

Example 3.4. The composite reinforced pressure vessel considered in Example 3.3 
is used to illustrate the effects of thermal and hygral strains on analysis. The rela- 
tion between the normal stress in the composite reinforcement and spacing (ax = 
7200s) defined in Example 3.3 is used again, as is the constraint E, 5 6000 lidin. 
As before, two possible equations can be solved: 

As with Example 3.3, the second equation is selected since the state of stress 
is explicitly defined and establishing E ,  and y,, is not required. Therefore, the 
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problem reduces to solving 

a, and 5, are functions of fiber orientation and are established from a, = m2aI + 
n2a2 and 5, = m 2 h  + n252. For the two materials considered in Example 3.3, the 
thermal and hygral coefficients of expansion are assumed to be 

Material 1 Material 2 

a l  3.4 X 10-6 in/in/"F 12.0 X 10-6 in/in/"F 
a 2  5.0 X 10-6 in/in/"F 8.0 X 10-6 in/in/"F 
B1 0.0 0.0 
B2 0.20 0.40 

The variation of a., and 5, with selected fiber angles B for each material are 
tabulated here. 

Material 1 Material 2 

For this problem it is assumed that AT = -280°F and the average moisture content 
is M = 0.05. Manipulation of the governing equation for reinforcement spacing 
results in 

8.33 X 10-' - 1.389 X 10-4(a,AT + B,&?) 
S = 

$1 I 

In this expression a,, p,, and $ I ,  are functions of 0. 

Individual contributions of thermal and hygral effects on the reinforcement spacing 
are illustrated by separating them and examining one at a time. Figure E3.4-l 
shows the effect of temperature compared to the solution for Example 3.3 for 
both materials. The effects of AT = -280°F (and M = 0) increase the required 
reinforcement spacing for each material considered. 

The effects of moisture alone are presented in Figure E3.4-2 for = 0.05 and 
AT = 0, and are compared to the results of Example 3.3. The negative reinforce- 
ment spacing indicates that the constraint on &, has been violated. This does not 
imply that no reinforcement is required, since the constraint on E, is an artificially 
imposed failure criteria. The swelling strains produced from inclusion of hygral 
effects will reduce the strain in the reinforcement. 
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Figure E3.4-I. Effects of temperature on reinforcement spocing, W = 0. 
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Figure E3.4-2. Effecls of moisture on reinforcement spacing wirh AT = 0. 
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Figure E3.43. Effects of AT and W on reinforcement spacing. 

The combination of thermal and hygral effects on predicted reinforcement spacing 
are shown in Figure E3.4-3. The originally predicted spacing from Example 3.3 
is not presented in this figure. Thermal and hygral effects can influence the state 
of stress in a composite, and have an effect on lamina failure. 
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3.4 Prediction of Lamina Properties (Miicromcchanics) 

Micromechanics considers the behavior of each constituent (fiber and matrix) as 
it relates to the prediction of lamina properties. The properties of lamina deter- 
mined from experimental procedures are macroscopic properties. They do not 
reflect the interactions between fibers and matrix, nor do they offer insight into 
possible improvements of material response. Early developments of microme- 
chanics consisted of three types of formulations: strength of materials, elasticity, 
and empirical. as summarized in Hashin [ l  1, 121 and in Chamis and Sendeckyi 
(131. Strength of materials approximations are easy to formulate, but the assump- 
tions used often violate strict elasticity formulations. The empirical approach is 
generally a curve-fitting procedure that incorporates experimental data and either 
elasticity or strength of materials solutions to provide a set of lamina design equa- 
tions. 

The most widely used relationships between constituent properties and the macro- 
scopic behavior of continuous fiber composites were developed prior to the 1980s. 
These relationships, although adequate for predicting elastic moduli, are not suffi- 
cient for the analysis of damage mechanics. In 1958, Kachanov [l41 modeled the 
creep characteristics of metals by introducing the effects of microcrack growth and 
dislocations through the use of internal state variables. This provided the impetus 
for the development of what has become known as continuum damage mechanics 
(CDM) 115-171. 

The discussions of micromechanics presented herein pertain to strength of mate- 
rials models, discussions of elasticity solutions, and empirical relationships. The 
simplest approach to determining lamina properties is based on assuming that 
each constituent material is homogeneous and isotropic. Consider a representative 
volume element (RVE) of a lamina as shown in Figure 3.12. In this RVE three 
distinct regions exist: fiber (given a subscript "V), matrix (given a subscript "m"), 
and voids (given a subscript "v"). 

matrix void 

Figure 3.12. Representalive volume element of a lamina 

The total mass (M) and volume (V) of the RVE ate M =Mr + M ,  and V = 
Vf + V, + V,, respectively. Dividing the mass by total mass and volume by total 
volume yields the mass and volume fractions, defined by 
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where m, = M r / M .  m,  = M , / M ,  uf = V f / V .  U, = V , / V ,  v, = V , / V .  These 
represent the mass and volume fractions of matrix, fiber, and voids. The density 
of the lamina can be expressed as 

Introducing mass fractions results in vf being expressible as 

Similar expressions for v,, etc.. can be developed and used to show that 

This expression can be used to determine the volume fraction of voids in a lamina, 
provided the mass fractions and densities of each constituent are known. Solving 
for U,, 

u , = l - p  -+-  [: ;:l 
The volume fraction of fibers and matrix depends, to a large extent, on fiber 
geometry and packing arrangement within a lamina. Assume, for example, circular 
fibers of diameter d ,  contained in a matrix such that three possible RVEs can be 
defined, as shown in Figure 3.13. Each packing arrangement-triangular, square, 
and hexagonal-produces a different volume fraction of fibers. The fiber volume 
fraction of the square array, for example, can be obtained by first assuming a unit 
width into the plane, and dividing the total area of fiber contained within the RVE 
by the area of the square. The area enclosed by the square RVE is A,,,, = s2 .  The 
area within this square that contains fiben is Afikr = n d 2 / 4 .  The volume fraction 
of fiber for this array as given in Gibson [l81 is 

For triangular and hexagonal arrays, a similar procedure results in 

n d 2  
Triangular: v f  = - 

( 2 J 5 ) s 2  

n d 2  
Hexagonal: vf = --- 

(3J5)sZ 

For each of these fiber arrays, the maximum volume fraction of fibers occurs 
when d / s  = 1. For this condition, the uf values for triangular. square, and hexag- 
onal arrays are 0.907, 0.785, and 0.605, respectively. These limits should not be 
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Figure 3.13. Triangulnr, square, and hexagonal fiber muyd. 

expuctd in practicc, since in most continuous fiber composites the packing is 
random and processing lowers the actual 7.4. 

3.4.1 Mechanical Properties of Lamina 

Various approaches 10 eslimdtlng the rncchanical msptlnse of lamina from consti- 
tutive material behdvior have uvolved. They range in complexity from a simple 
rule-of-mixtures approach to the more sophisticated concentric cylinders approach. 
Between these extrerncs are scveral estimation schemes based on experimental 
c~hservations and interprrtations. 

3.4.7.1 Strength of Materials Approach 

In  developing stress-strain relationships involving [Q] and [a].  the material 
propenies used are olien tcrmed apparent and arc generally estahlishcd through 
mechanical testing. It i s  usrful ro establish pmcedures for estimating appmnt 
properties by knowing the behavior of cach constituent. The lrtrength of materials 
approach is straightforward and simple to formulate. Consider a section of 
lamina as shown in Figure 3.14. Several possible RVEs arc suitable for mtdel 
developmenl. In order to simplify geometric interactions. thu mcdel u.wd closely 
rcsumhles that of Figure 3. IJc. 

Figure 3.14. Possible lamina RYE conjigurarions. 
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Two conditions can be applied to determine mechanical response in the fiber direc- 
tion: constant stress or constant strain. Constant strain requires uniform displace- 
ments (Figure 3.15). This results in the fiber and matrix experiencing the same 
strain, with the stress distribution in the lamina as shown. A uniform displacement 
requires = E, = E ,  and since fibers and matrix are assumed to be isotropic and 
homogeneous. uf = EEI& and 0, = Emcm Conversely, if a constant (uniform) stress 
test is conducted as shown in Figure 3.15, the resulting strain distribution is as 
indicated in the figure, since = ao/Ec and E, = cro/E,. 

constant strain (unifom displacement) uniform stress 

Figure 3.15. Constant strain and stress modek. 

Since the interface between fiber and matrix is assumed to be a perfect bond, 
= E,,,. Therefore, the constant (uniform) strain approximation is closer to the 

actual physical conditions than the constant (uniform) stress condition for estab- 
lishing material behavior in the fiber direction. There are cases when constant 
stress conditions are more appropriate. The constant strain model is sometimes 
termed the Voigt model, while the constant stress model is the Reuss model. 

Assume the lamina is be modeled as shown in Figure 3.16, with length L, width 
W, and a unit thickness. In establishing the material properties in each direction, 
both constituent materials are assumed to be isotropic. homogeneous, and linear 
elastic, with elastic constants Er, v{, Gf and E,, v,, G,. 

Figure 3-16. Lamina &l for detemining elastic moduli. 

Determination of El.  The model shown in Figure 3.17 is used to determine El. 
Based on previous discussions, the uniform strain model is an appropriate one for 
approximating E l .  The strains in the fiber and matrix are related by E: = EY = E .  
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Figure 3.17. RVE for determincrtion of El .  

The stress in the fiber direction is approximated as 

Resultant Force 
a1 = 

Area 

Considering the stress in both the fiber and matrix as contributors to the total stress 
yields 

a f t h f ) ( 1 ) + 4 ' ( h ~ ) ( l )  hr h, 
u1 = = g[ - + ap- 

(hf + hm)(l) hf + h, hf + hm 

Since the lamina thickness is unity, and both fiber and matrix are the same length. 
the volume fractions of fiber and matrix are expressed in terms of hr and h, as 

h f 
Vf = - h, 

and v, = - 
hi + h, hf + hm 

These expressions for volume fractions are applicable only to this model. Another 
model may result in different forms of vr and v,. Using volume fractions. the stress 
is expressed as U, = a[vf + of v,. Since of = Efgr = Ef&, and up = Emem = 
E,&, the stress can be written as al = (Ewf 4- E,U,)E, which can be expressed as 

where 
El = Efvf + Ernu, 

Equation (3.36) is known as the rule of mixtures and is a fairly accurate approxi- 
mation of El. 

Determination of E1. To determine Ez,  the RVE shown in Figure 3.18 is used. An 
appropriate first approximation to model the mechanical response in the 2-direction 
is the constant stress (Reuss) model, as shown in Figure 3.19. 

The stress in both fiber and matrix are the same in the constant (uniform) stress 
model. Since the moduli of each constituent is different, the strain will not be 
equal in the fiber and matrix. The stress and strain in the 2-direction for both the 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



1 
hf 

Figure 3.18. RVE for determining Et .  

E = constant a = constant 

&!+E: a. =a? =a!! L - N  

Figure 3.19. Constant stress and strain models for determining E2. 

fiber and matrix are related by 

The deformation under conditions of constant stress is expected to resemble that 
shown in Figure 3.20. The strain in the Zdirection is simply expressed as 

Figure 3.20. Deformalians of RVE for E? under coflshznl shess ~ 0 ~ ~ 5 .  

where 
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The strain in the Pdirection is therefore 

Since E;! = UO/E~. 

Determination of Glz. In a manner analogous to the previous two derivations, the 
shear modulus can be established by considering a free-body diagram as shown in 
Figure 3.21. From this it is obvious that the stresses are related by t:, = tl", = t ~ z  
The shear strains for both fiber and matrix are a function of the shear modulus 
for each constituent, with yf2 = T : ~ / G ~  and yf"2 = rf"z/G,. The shear strain in the 
matrix does not equal that in the fiber. The shear deformation is 

where 
A = hf yf2 4- h m ~ ,  m 2 

Using the definitions of shear strain and A presented earlier, the shear stress-strain 
relationship is 

Since r12 = G 1 2 y 1 2 .  the expression for G l z  is 

Figure 3.21. FBD and deformdions of detemirrarion of GI2. 

Determination of vl2. A similar procedure is used in determining Poisson's ratio. 
Instead of considering the applicability of either a uniform stress or strain. displace- 
ments must be considered. Using the RVE in Figure 3.22, and the definition 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



I 
AWR 

Lt------ 1 

Figure 3.22. RVE for defenniruuion of V I Z .  

the lateral displacement of the model and each constituent are related by AW = 
-WEZ = W V I Z E I  = Amw + Afw. The lateral displacement of the matrix is A,, = 
h,&,, = -hrnvm~l .  Additionally. h, = v,(hf + h,) = v,W. Therefore, A,, = 
-WU,V,EI, and Arw = -Wvrvf&l, which leads to AW = - W E ~ ( U ~ V ~  + u,v ,. ) 
Since viz = ( A W / W ) E ~ .  the expression for Poisson's ratio is 

Example 3.5. Assume a chopped fiber reinforced lamina can he modeled as shown 
in Figure E3.5-I. Further, assume both the fiber and matrix are isotropic and homo- 
geneous, with elastic constants Er, Gr, v(, and E,. G,, v,. We wish to estimate 
the elastic constants E ,  and El.  

Figure E3.5-l. Ruk of mixtures model of 4 choppedfiber lamina. 

In order to determine El and E? an appropriate representative volume element 
(RVE) must he selected. For the purpose of illustration, the one shown in 
Figure E3.5-2 is used. 

In order to determine the elastic moduli, two different materials are considered. 
Material A is onhotropic and material B is isotropic, since it consists of matrix 
only. Each material is considered separately, then combined into one material. 
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Figure E3.5-2. RVE for detennintrtion of El and E,. 

Material B. Since material B is isotropic, its elastic moduli in the I- and 2- 
directions are the modulus of the matrix. 

Material A. Two directions are considered for material A. From Figure E3.5-3, 
each direction is modeled differently. 

Figure E3.5-3. Model of d e d  A. 

XI-direction. The constant stress model is appropriate for this direction. There- 
fore, 

AL 
The strain in the l-direction is expressed as E ,  = -, 

l f  + [ m  
where AL = &{(l , )  + ET([,). By defining the terms Lr = l f / ( l f  + 1,) and L, = 
l m / ( l r  + l,), the strain can be written as 

From this it follows directly that for material A, 

x2-direction. The constant strain model is most applicable in this direction. 
Therefore. the strains and stresses in each constituent material are expressed 
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f as F: =c; = EZ. LT; = Ere2, and n? =E,&?. The stress in the 2-direction is 
expressed as 

From this it follows directly that E; = Er& + E,,!.,,, 

Combined material. After determining the material properties in each direction 
for both models, we combine them into one model. If both materials are combined 
as shown in Figure E3.5-4, one can identify the model (constant stress or strain) 
most applicable for each direction. 

Figure E3.5-4. Model for combined nmtor~l.  

X,-direction. The constant strain model is appropriate in this direction. The 
procedure followed is identical to that previously described, and explicit details 
are eliminated. A new notation is introduced and is applied in conjunction with 
the definitions for and L,,,. The new notation is 

h f h, 
Hf  = - and H, = - 

hr + h, hi + hm 

The stress in the l-direction is 01 = u ~ ( H ~ )  + @(H,) = (E;\Hf + E,H,)al. 
Using this definition of stress and the previously determined expression for 
E t ,  it is obvious that 

xz-direction. The constant stress model is used for this direction. Following 
the same procedures as before, the strain is 

From this expression it is easy to show that 
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Neither of these expressions contain the classical form of the volume fractions as 
introduced in this section. The volume fractions for the fiber and matrix can be 
expressed using the definition of volume fraction. For the chopped fiber composite 
of this example, they are 

Matrix: U, = 
(If + im)hm + Imht = H m + H f L , , , = l - u f  
if + lm)(hf +h,) 

The model selected to represent the chopped fiber composite in this example was 
not the only possibility. An alternative is shown in Figure E3.5-5. The procedure 
for finding E l  and E2 does not change. 

I material B 

Figure E3.5-5. Allemale model for choppedJiber Lamina 

3.4.1.2 Modifications of E2 Approximations 

The approximations for E2 are less accurate than for E l .  It is fairly well established 
119. 201 that by considering strain energy, upper and lower bounds of Ei can be 
determined and expressed by 

This shows that the constant strain model represents an upper bound, and the 
constant stress model a lower bound on the actual modulus in either the 1- or 
2-directions, as illustrated in Figure 3.23. The actual value of E is between the 
two solutions. Equations (3.36) and (3.39) generally tend to overestimate El and 
4 2 ,  while underestimates of E2 and G 1 2  are given by equations (3.37) and (3.38). 

A reason for the underestimation of E2 can be seen by considering the actual 
displacements that occur in developing the expression for Ez.  Following the proce- 
dures of Tsai and Hahn[5], consider the deformed shape of the uniformly stressed 
RVE in Figure 3.24, which includes the effect of Poisson's ratio along edges AB 
and CD. The strains and stresses in the fiber and matrix are more accurately 
expressed as 

E,  = efr = E~ = constant = c U, = U" = U'? = U,, 
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Figure 3.23. Upper and lower bounds on elastic moduli. 

Figure 3.24. RVE for determination of E* including Poisson's M. 

Using conventional stress-strain relations for isotropic materials, the constituent 
materials experience stresses and strains which are 

Of, vi E ,  ---- or, U f  m V", 

' - E f  E, 
Ofy  = - - -00 = C E, = - - = C 

Et Ei Em Em 
'Jry v f  0 0  ur 

& f r  = - - -of, tr - - -ck = C & 
go urn 

Er Er Er Er 
m y z - - -  urn 

Em E ,  

The strain in the X-direction can be written as E ,  = (U, - v,o,) /E, .  Since a, = 0, 
= C = - v x o y / E r .  a solution for c can be found and the stresses in the X-direction 

for both fibers and matrix expressed in terms of the applied stress 00 as 

The modulus E2 is E2 = U ~ / E ~ ,  where c y  = vr&fY + Substitution of the 
relationships for E,  and v, from equations (3.36)  and ( 3 . 3 9 )  yields 

This approximation works well for E z ,  but not for 
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3.4.1.3 Semiempirical Estimates of E and G1 
Tsai and Hahn [S] present a semiempirical approach to estimating E2 and G12 
which requires experimental data. They argue that since the mauix is softer than 
the fiber, it is assumed that the stress canied by the matrix in both tension and 
shear is a ratio of that canied by the fiber and is expressed as 

where the subscript s refers to shear. The normal stress in the y-direction is 

Therefore, 
0 0  

fl>f = 
U f  + umny 

The swain in the y-direction of the composite is 

Since c y  = aO/EY, 
1 1 ~ t l E r +  umrlylE, - - - -  - (3.41 j 

E2 Ey ui + urn?? 

In a similar manner, 
I - vrlGr + vmqs/Gm -- (3.42) 

G12 ci + umqr 

These equations provide better estimates of elastic moduli than the simple rule- 
of-mixtures equations (3.37) and (3.38). When q ,  and q, are set to unity, equa- 
tions (3.37) and (3.38) are recovered. The q parameters are useful in correlating 
experimental data. Data from Tsai [21] is used to show the relationship between 
equations (3.40) and (3.41) in Figure 3.25 for several q values. The material prop- 
erties used in these plots are Er = 73.1 Gpa (10.6 X 106 psi), E,  = 3.45 Gpa (0.5 
X 1O6psi), vf = 0.22, and urn = 0.35. 

Figure 3.25 shows how q can be used to model a specific modulus from experi- 
mental data. The value of q that produces the clusest correlation for this material 
may not be the appropriate value for a different material. Similarly, the q that 
provides the best correlation for EZ may not be appropriate for G12- 

The usefulness of q in predicting G12 can be seen in Figure 3.26, where data from 
Noyes and Jones 1221 is shown with predictions from equation (3.42). The material 
properties for the example of Figure 3.26 are Gr = 30.2 Gpa (4.38 X 10"si) and 
G m  = 1.8 Gpa (0.26 X 106 psi). 
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4 - - eqWtion(3.40) - - - equation (3.41) 
- 

- 
.X 2 - a 
W" - 

Figure 3.25. C o r r e l h n  of equations (3.40) and (3.41) wifh &from 7kai [21/. 

Figure 3.26. Correhtion of G,, from equah'on (3.42) wilh &from Noyes and Jones 
1221. 

Table 3.1. Summary fonnulns for predicting composife 
moduli (aper [S]). 

P = vrPr + numpm 

W + l)v, 

Engineering P Pr P m  n 
Comtont 

EI El Ef Em I 
U12 v12 ur v", I 
E2 llE2 IIEr IIE, 'Is 
.C, IR, Ilkr I*, 'lk 
G12 ]/c12 IIGr ]/G, 'IG 

The equations presented here were put in a general form by Tsai and Hahn [ 5 ]  
and are summarized in Table 3.1. 

3.4.1.4 Elasticity Solutions with Contiguity 

Contiguity was introduced by Tsai c211 as a method of making sense out of exper- 
imental data in comparison to theoretical predictions, and is based on fiber spacing 
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and arrangement. The contiguity factor, C ,  has a range of 0 < C < I corresponding 
to the cases illustrated in Figure 3.27. Either none of the fibers contact adjacent 
fibers (C = 0), or all fibers contact adjacent fibers (C = 1). Additional elastic 
constants, based on assuming each constituent is elastic and isotropic, are 

C = 0; isolated fibers. 
contiguous matrix 

C = l; isolated matrix. 
contiguous fibers 

Figure 3.27. Models for extremes in conriguify factor C. 

In general the contiguity factor does not affect E * .  It is generally assumed that 
fibers are both continuous and straight. During processing. the fibers within a 
lamina may become somewhat curved. They may also become nested within fibers 
from an adjacent ply. In order to account for this possibility, and to provide a 
better correlation between theory and experiment, the misalignment factor k was 
introduced. The resulting expression for E l  is 

where 0.9 c k < 1 .O. The remaining elastic constants can similarly be defined. 
These expressions, which include the contiguity factor C, are 

Ez = A * [ (  l - C)B* + CC*] (3-44) 

V I Z  = (1  - CID* + CE* 

G12 = (1  - C)F* + CG* 

where the constants A* through G* are given as 

B* = K f ( 2 K m  f G m )  - G ,  W f  - K m ) ? ) ,  
( 2 K m  -t G m )  -t- m-f - K,)v ,  
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These approximations do not generally yield better results than previous cases 
considered, and typically represent bounds on the true modulus. 

3.4.1.5 Halpin-Tsai Equations 
The Halpin-Tsai equations 1231 are an interpolative procedure for approximating 
elastic moduli and Poisson's ratio. They are considered to be accurate for many 
cases and are 

where 

In these equations M = composite modulus ( E Z .  GIZ. or u2)). M f  = fiber modulus 
(Er. Gr.  vi), and M ,  = matrix modulus (E , ,  G , ,  v,,,). The parameter c is a measure 
of fiber reinforcement in the composite and depends on various conditions such as 
loading and fiber and packing geometries. The value of < is obtained by comparing 
equations (3.49) and (3 .50)  with exact elasticity solutions and is not constant for a 
given material. It may change values depending upon the modulus being evaluated. 
The upper and lower limits imposed on c are 0 5 t 5 W. If c = 0, the lower bound 
solution for modulus is obtained and 

For = W. the upper bound solution for modulus is obtained and M = MP( + 
M,v,,,. The limiting values of 7 are 

1 rigid inclusion 
q = { 0 homogeneous material 

- I / (  voids 

Results from the Halpin-Tsai equations show acceptable correlation to actual 
data 1231 for certain values of 6 as shown in Figure 3.28. As in the case of approx- 
imations to E2 from equation (3.41). the accuracy of correlation depends on the 
composite parameter being evaluated. The value of c giving the best correlation 
for Ez may not be the same for G I 2 .  Determination of an appropriate value for c 
requires fitting experimental data to the theoretical predictions. 
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8 equation (3.49) -I . . 
reference c3.241 ! . I  

Figure 3.28. Correlnrion of E ~ f r o m  equation (3.42) wirh datafrom Habin and lSai 1231. 

3.4.1.6 Additional Techniques 
The techniques already presented for predicting mechanical properties of lamina 
do not constitute the entire range of possible models. Predictions of E ,  and U,* 
are generally less model dependent than predictions of E* and G,?.  Classical 
approaches to micromechanics modeling consider constituent propenies (Ef. E,, 
vf, etc.) and volume fractions (VC and U,). With the exception of contiguity consid- 
erations, these models do not account for the fiber packing geometry, which can 
influence the predicted properties. Chamis [24. 251 has developed a set of relation- 
ships that incorporate fiber spacing as part of the model and predict mechanical, 
thermal, and hygral properties. The model is based on an assumed square array 
of fiber packing, in which interfiber spacing (6). fiber diameter (df), ply thickness 
(I,), and RVE cell size (S) are incorporated into the model, as schematically shown 
in Figure 3.29. In this model the number of fibers through the ply thickness can 
k used to estimate f i k r  volume fraction (uf). For a square array of fibers it has 
been established that the cell size is related to vf and df  by 

Figure 3.29. Geometric relnrionships for unijed model (afer Chamis 1241). 

Using this relationship, the number of fibers (Nr) through the lamina can be easily 
estimated from 

IP Nf = - 
S 

(3.51) 
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Relationships between volume fractions, constituent densities (pf ,  p,), and weight 
ratios (Af.  A,) are useful in estimating intermediate relationships. Constituent densi- 
ties are usually available from material suppliers, and volume fractions can be 
experimentally determined. The relations just cited are expressed as 

The relationships developed by Chamis 1251 treat the matrix as isotropic and homo- 
geneous, where E,. G,. and v, are related by Gm = Em/2(1 + U,). The fibers 
are assumed to have direction dependency. The longitudinal and transverse elastic 
moduli for the fibers are defined as Er11 and E m .  Similarly, longitudinal and trans- 
verse shear moduli and Poisson's ratio are expressed as GfI2. Gfz3. vf12, and Vf23. 
The micromechanics relations between constituent properties, volume fractions, 
and composite properties in Chamis [24] are 

Aside from the f i  in some of these expressions, the major notable difference 
between them and previously developed relations is that the fiber is treated as an 
orthotropic material with direction-dependent material properties. 

Material properties for various fibers and matrices are cited in Chamis [24] and 
are reproduced herein for convenience in using equation (3.53). Table 3.2 presents 
pertinent properties for selected fibers, while Table 3.3 presents properties for 
selected matrix materials. This is only a partial list of properties for available 
fibers and matrices. 

Table 3.2. Selectedfler properties (afler Chmis 1241). 

Moduli (pi x 106) 

Material NI dr (yin) Ennl Enz Gnz Gn3 ~ n z  m3 

Boron I 560 58.0 58.0 24.2 24.2 0.20 0.20 
n n 
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Toble 3.3. Selected mami properties (afler 1241). 

Malerial E,(psi x 106) C.(psi X 106) urn 

LM 0.32 0 112 0 43 
IMI n 5n 0 177 n d i  . . -. . . 
IMHS 0.50 0185 0.35 
MH 0.75 0.278 0.35 
Polyimide 0.50 0.185 0.35 
PMR 0.47 0173 0.36 

Hopkins and Chamis [261 developed a procedure similar to that defined in 
Chamis [24] for high-temperature metal matrix composites. The equations are 
derived from a mechanics of materials formulation, where a single fiber (in a 
square array) is assumed to be surrounded by an interphase region (to account for 
chemical reactions which commonly occur between fiber and matrix), and matrix, 
as shown in Figure 3.30. The fiber, interphase, and matrix regions are assumed to 
be transversely isotropic (isotropic behavior in the 2-3 plane is assumed). Each 
modulus is defined from a model of either constant strain or constant stress. The 
sizes of fiber, interphase, and matrix regions ( S F ,  sd,  and S,, respectively) are 
such that we can define s r  = d m ,  sd = (do - d ) m .  and S, = s - dam. 
where s = d m .  

Subregims of 
interlamimr 

nonuniformity 

Figure 3.30. RVE oJsquareJlber subregions (aJier Hopkins and Chamis 1261). 

For a uniaxial load in the transverse direction (2-direction in Figure 3.30). and 
neglecting Poisson's ratio, the displacement compatibility of subregion C is s s 2  = 
srsr + sdcd +S,&,. A force balance for equilibrium requires a2 = ar = ad = a,,, 
and leads to a definition of Ez for region C of 
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lntrcducing the values for sf, S,, etc., results in 

By setting dldo = 0, the equivalent modulus for subregion B is obtained. The 
modulus for subregion A is E,; therefore, the effective modulus in the 2-direction 
is defined by allowing a combination of moduli such that E2s = E$sr + ~ 2 8 s ~  + 
Ets,. This results in E2 being 

Following similar procedures, one can develop the additional relationships between 
predicted moduli and constituent moduli for other lamina directions. Using the 
notation that subscripts d, f ,  and m refer to interphase, fiber, and matrix, respec- 
tively, and that each modulus may be direction dependent leads to the complete set 
of high temperature metal matrix composite micromechanics relations for mechan- 
ical properties given in Hopkins and Chamis 1261: 

v12 = 1 ~ 1 3  = ~ r n I J m 1 2  +U[ { [ I  - ( d l d ~ ) ~ ]  Vd12  + ( ~ / ~ o ) ~ v ~ I z  

Although one may attempt to use these in correlating modulus predictions from 
equation (3.54) to those of the other procedures, some difficulties arise. For 
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example, defining the actual interphase zone size (do) or the elastic moduli 
associated with it is not a well-established procedure. Therefore, it is generally 
more convenient to express equation (3.54) in a form more compatible with other 
procedures. In doing this, it is first assumed that d /do = 1.0, and the matrix is 
isotropic with E,II = E m 2 2  = Em, Gm12 = Gm23 = Gm. and um12 = V,. Similarly. 
the interphase properties become the fiber properties, so  that Edll = Efll ,  etc. 
Using these assumptions leads to 

The expressions in equation (3.55) are similar to those defined in equation (3.53) 
and yield similar results. 

An additional micromechanical model, which takes the form of the Halpin-Tsai 
relationships, ha5 been developed by Spencer [27] for estimating E2 and Glz. The 
model is developed based on a square array of fibers and includes the effects of 
strain concentrations at points of minimum clearance between fibers in the RVE. 
Spencer assumed that only the matrix is isotropic and homogeneous. The fiber 
separation, expressed as y (where y = s/d and should not be confused with shear 
strain), can be established for three packing arrangements (triangular, square, and 
hexagonal). Each packing arrangement results in a different numerical relation- 
ship between y and the fiber volume fraction vt, which is expressed as an index 
(I), given as I = l/(y2ui). These indexes are identical to those developed at the 
beginning of Section 3.4 and are 1.103, 1.272, and 1.654 for triangular, square, 
and hexagonal packing arrangements, respectively. Although each of these results 
in a different variation of y with vr, Spencer has approximated all three arrange- 
ments by defining a modified index as I = 1.1~: - 2 . 1 ~ ~  + 2.2. Using this index, 
y becomes 

The semiempirical relationship developed in Spencer 1271 for predicting elastic 
modulus is 

p 

M 2y t a n  ) Y - k  (3.57) 
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where M, is the composite modulus (either E2 or G I ~ ) ,  M is the appropriate matrix 
modulus (either E, or G,),  and 

These expressions, although not correlated with experimental data in Spencer [27], 
are considered to provide accurate approximations to E2 and G 1 2 .  Numerical prob- 
lems arise for special cases in which k = y,  and the approximation is no longer 
valid. Expressions for El and v12 were not developed since it is commonly felt 
that existing expressions provide sufficient accuracy for most applications. 

3.4.1.7 Predictive Technique Summary 

From these discussions it is obvious that no single model or procedure exists that 
can he classified as the best approximation. Simple rule-of-mixtures approxima- 
tions for El and v12 based on strength-of-materials techniques are generally reliable 
for the range of fiber volume fractions typically encountered. The prediction of Ez 
and G 1 2  are not as reliable. 

Each of the relationships presented in the previous section is based on a microme- 
chanical model developed from the study of interacting periodic cells. Two-phase 
cells have been the primary focus, but a three-phase cell model for metal matrix 
composites has also been presented, which can be degraded to a two-phase model 
when required. The text by Aboudi 1281 is dedicated to the study of a unified 
approach to micromechanics focusing on periodic cell models. Elastic as well as 
nonelastic constituents (e.g., viscoelastic, elastoplastic, and nonlinear elastic) are 
discussed. In addition, a comprehensive reference for micromechanical models 
of continuous, particulate, and discontinuous fiber composites is available 1291. 
Included in this work are models for viscoelastic response and transport properties. 

Example 3.6. This example presents a comparison of predicted moduli from 
several procedures. Assume the material is S-glass fiben in a PMR matrix with 
material properties defined in Tables 3.2 and 3.3. The largest variation in predicted 
moduli between the procedures considered is in E2 and G 1 2 .  For the purpose 
of discussion, only E? is considered. The five relationships between E2, volume 
fractions, and constituent moduli given in equations (3.37), (3.40), (3.53), (3.53, 
and (3.57) are considered. The first four can be numerically summarized in terms 
of the constituent volume fractions and elastic moduli from Tables 3.2 and 3.3 as 

Equation Number Relationship 
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The remaining equation. (3.57). requires an intermediate calculation using equa- 
tion (3.56). The numerical value of k is k = 0.962, and y varies with volume 
fraction. For a fiber volume fraction of 0.90, k = y and the prediction of E2 is 
not defined. Estimates of E2 based on each of these equations are presented in 
Figure E3.6 as a function of ur.  Predictions from equations (3.37) and (3.40) are 
close to one another, but significantly lower than those from the other relation- 
ships. Estimates for G12 can be shown to follow similar trends. More deviation in 
results would arise if an orthotropic fiber had been selected, since not all equations 
are capable of accounting for this condition. 

equation (3.40) 

, ,.- r - 
0 .O 0.2 0 4 0.6 0.8 1.0 

Volume Fraction of Fibres (v,) 

Figure E3.6. Correlation of predictive micromechanics equations. 

3.4.2 Physical Properties and Strength Estimates 

Physical parameters defining thermal and hygral behavior of lamina can be esti- 
mated in a rule-of-mixtures manner. The models are similar to those used for 
the elastic moduli. As a result, the topic is not fully developed herein, and only 
the results from selected references are presented (Chamis [24, 251, Hopkins and 
Chamis 1261. Schapery [301, and Hashin 1311). Micromechanics expressions for 
composites with isotropic constituents are given in Schapery 1301, and the case of 
orthotropic constituents is discussed in Chamis [251, Hopkins and Chamis 1261, 
and Hashin [31]. For isotropic constituents, the thermal expansion coefficients are 
represented as 

where a = Erarvt + E,a,u,, and E = + E,u,. 
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Chamis [24] assumed that the fibers experience orthotropic thermal expansion with 
afl and an representing their longitudinal and transverse coefficients of thermal 
expansion, respectively. The corresponding relationships for a1 and a2 are 

where El is given by equation (3.53). Although these expressions do not reflect 
fiber orthotropy, the expressions for thermal conductivity in Chamis [24] do. 

Expressions involving interphase properties are presented in Hopkins and Chamis 
1261. Imposing the same assumptions and limitations on d/&, E d ,  etc., as done in 
the corresponding elastic modulus estimates results in 

In equation (3.60) the expressions for El and E2 are given by equation (3.55). 
The expressions for a1 in equations (3.59) and (3.60) are identical, while those for 
a2 are different. Numerical values for atl, an, and a, given in Chamis [24] are 
presented after coefficients of hygral expansion are presented. All three expressions 
for a l  and a2 yield reasonable results. 

The procedures used to develop coefficients of hygral expansion are analogous 
to those for thermal expansion coefficients. The primary difference is that Of = 0 
for both isotropic and onhotropic fibers since they are generally not sensitive to 
moisture absorption. The coefficients of moisture expansion in each direction are, 
from Schapery (301, 

The analogous expressions defined in Chamis (251 are 
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The expressions for in each equation are identical. The two equations yield 
different results since the El and E2 terms in equation (3.62) are assumed to be 
defined by equation (3.53). The coefficients of thermal and hygral expansion for 
selected constituent materials are presented in Tables 3.4 and 3.5. 

Table 3.4. Thermal expansion coefiients for sek-cled~%ers 
(afier Chamir 1241). 

Material a ( ~ 1 0 ~  i n i n /  a* ( X I O - ~  iin/in/"F) 

Boron 2.80 2.80 
HMS -0.55 5.60 
AS -0.55 5.60 

Table 3.5. T h e r d  and hygml expansion coe&irnls 
for selectrd mamobir ma~enids fafier Chamis 1241). 

Material a (x1OV6 in/inlDF) B (in/in/H) 

MH 40.0 0.33 
Polyimide 20.0 0.33 
PMR 28.0 0.33 

The relationships between constituent strengths, moduli, and volume fractions can 
be oblained from various sources, including Hopkins and Chamis 1261 and Chamis 
132, 33). A wide range of approaches are possible when attempting to develop a 
micromechanics model for strength predictions. several of which are presented in 
this section. 

The expressions presented herein assume tensile and compressive failure strengths 
of fibers and matrix, represented as S=.  Sfc, S,T, and S,c, respectively. The 
fiher is assumed to be insensitive to shear and has no denotable shear strength. 
The matrix can experience shear failure, which is denoted as S,$. Experimentally 
determined failure strengths for continuous fiber lamina are typically established 
under conditions of longitudinal, transverse, and shear loadings in the 1-2 plane 
and are expressed as S ] .  Sz ,  and S I X ,  respectively. Both S I  and S:. can have a 
tensile (T) and compressive (C) subscript, while Slz  is invariant to positive or 
negative shear. One should not confuse the S,2 defined in this section with the S12 
compliance term previously defined. 

The simplest expression available is based on a simple mechanics of materials 
model [32] which does not define an S12 .  The failure strengths from Chamis [32] 
are given to be 
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The first of these expressions is sometimes reduced by the assumption that since 
E, << Erl ,  the second term can be omitted without a significant loss in accuracy. 
In some cases this assumption may be valid, while in others it may not. The 
compressive form of the expression for S1 does not account for possible fiber 
buckling and is therefore not as reliable as the tensile form of the expression. 

Expressions for failure strengths defined in Chamis [33] consider shear failure, as 
well as failures in the 1- and 2-directions, and are 

The S1 expression in equation (3.64) is identical to that in equation (3.63) under 
the assumption that the v, term can be neglected, as previously discussed. 

The relationships developed in Hopkins and Chamis [26] are more elaborate than 
either of the previous relationships. For a tensile stress in the I-direction the 
strength is predicted by 

For a compressive stress there are three options, the appropriate one being that 
which produces the minimum value. Therefore, for compression. 

Src Vf + -- l "El 
U, + - 

The expressions for S n . c  and S12 are similar: 
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where @ corresponding to SZT,C is 

The expression for @ corresponding to S L ~  is 

The strength predictions just presented generally contain Efl lr  ERZ. and E,. These 
moduli are assumed to be independent of load direction, and a tension test is 
assumed to produce the same modulus as a compression test. Although this may 
be true for some materials, it is not always true. In order to account for this 
possible bimodular behavior, one could approximate the compressive modulus by 
using constituent properties based on a compression test. 
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3.6 Problems 

3.1 For the state of plane stress shown, determine the stress in the principal 
material directions in terms of 00. 

3.2 A unidirectional lamina with dimensions shown is stretched into the deformed 
shape indicated by the dashed lines. Determine the state of stress in the 
X - y  plane required to produce this deformation, knowing that El = 30.3 X 

106 psi, E2 = 2.80 X 106 psi, G12 = 0.93 X 106 psi, and v12 = 0.21. 

3.3 Work Problem 3.2 with E I  = 7.0 X 106 psi, E2 = 2.1 X 106 psi, G I Z  = 
0.8 X 106 psi. and v12 = 0.26. 

3.4 A unidirectional lamina with El = 30.3 X 106 psi, E2 = 2.80 X 106 psi, 
G12 = 0.93 X 106 psi, and v12 = 0.21 is stressed as shown. Find the 
corresponding displacement field. 

(A) (C) 

20 Csi 30° low 
W' - 20ksi 5 ksi 

3.5 Work Problem 3.4 assuming E l  = 20.02 X 106 psi, E2 = 1.30 X 106 psi, 
G ] : ' =  1.03 X 106 psi, and v12 =0.30. 
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3.6 A unidimctional lamina with the material properties of Problem 3.5 is 
subjected to the normal stress shown. Determine the apparent Poisson's 
ratio v,,. 

3.7 A unidirectional boronlepoxy lamina is cured at 370°F and allowed to return 
to room temperature at 70°F. The coefficients of themal expansion are 
(YI  = 1.5 X 1 0 - ~  inlinPF, a2 = 12.2 X 10-6 inlinPF. The lamina is loaded 
as shown. Find the strain in the principal material directions knowing El  = 
30.3 X lob psi, E2 = 2.80 X 106 psi, G12 = 0.93 X l@ psi, and v,;? = 0.21. 

10 ksi 10 ksi 

3.8 The lamina of Problem 3.7 is subjected to an environment of 95°F and a 
relative humidity of 95%. The coefficients of moisture absorption as well as 
the initial and equilibrium moisture contents and the appropriate equation for 
relating moisture content and time are PI = 0.01, Bz = 0.40, MO = 0.005, 
M, = 0.0171, 

where t is the time measured in seconds. Determine the strain in the principal 
material direction after 6 hours. 

3.9 A lamina with mechanical properties given in Problem 3.7 is placed between 
two rigid walls in the stress-free state (370°F). As the lamina cools to 70°F its 
overall length (the distance between the walls) remains unchanged. Therefore. 
a stress in the X-direction is present. Determine the resulting Cartesian and 
principal material direction stresses and strains. 

(A) 8 = 30" (B) 8 = 45" (C) 8 = -60" 

3.10 The lamina of Problem 3.9 is also subjected to hygral effects for 6 hours. 
The hygral properties in Problem 3.8 are applicable. Determine the Cartesian 
and principal-direction stresses and strains for this lamina for 8 = 30". 
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3.1 1 Rigid beam AB is pinned at C, and supported at A by a pinned composite 
column. The dimensions of the composite column and beam AB are shown. 
In order for the entire system to function as designed, member AE must 
be dowed  to displace 0.025 in when beam AB is subjected to the loading 
shown. Determine the required fiber orientation for this to happen knowing 
El  = 20.0 X 106 psi, E2 = 1.30 X 106 psi, G,:! = 1.03 X 106 psi, and v12 = 
0.30. 

3.12 Assume triangular and regular hexagonal fiber packing arrangements as 
shown. The fibers have a diameter d and a separation distance S. Prove 
that 

nd2 
~:f = - (triangular) 

245.9 

ur = - Xd2 (regular hexagonal) 
3 A s 2  

3.13 Assume that a rectangular fiber of dimensions a and b is embedded in a 
matrix material. Determine vf for each packing geometry shown. 
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3.14 A continuous fiber "hybrid" composite is assumed to be modeled as shown. 
The fibers are made of two different materials. The fibers and matrix are 
isotropic and homogeneous with elastic constants (Ef, Gr, L J ~ ) ~ ,  (Er, Gr, vfh, 
and (E,, G,, v,). The subscripts 1 and 2 refer to fibers 1 and 2. An RVE 
of the hybrid lamina is also shown. Use this RVE shown to: 

(A) Derive expressions for El  and E2 by appropriate use of the Voigt and 
Reuss models using the model shown. Be aware that fibers 1 and 2 are 
different and that E{ # E:. 

(B) Assume that the total volume of the material modeled is V = 1 .O, and 
the volume fraction of matrix in the lamina is 40%. Assume that the 
elastic modulus of fiber I and fiber 2 can be related by E{ = n~:, where 
1 5 n 5 5.  If E: = 20E,, plot E l / E ,  and E z / E ,  vs n .  

material A material B 

3.15 A layered medium consists of three alternating layers of dissimilar materials. 
All materials can be assumed to be elastic, isotropic, and homogeneous, 
with properties [EA,  C A ,  vA] ,  [EB, GB, v B ] ,  and [Ec, GC, vc] .  Clearly state 
assumptions regarding constant strain. etc.. and use simple rule of mixture 
assumptions to 

(A) Estimate the effective elastic moduli E l ,  E2.  and E3. 
(B) Based upon the results of part (A), approximate GI1 and G13. 

3.16 Assume that a graphite/epoxy lamina can be modeled as shown. 

(A) Derive expressions for E l  and EZ using Voigt and Reuss models. 
(B) Assume a 70% fiber volume fraction and material properties of Ef = 

40 X 106 psi. vf = 0.25, E ,  = 0.5 X 106 psi, and v, = 0.35. Compute 
El and E2 using the expressions derived in part (A). 

(C) Compute E l  and E2 using the Halpin-Tsai equations with = 1. 
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3.17 The elastic moduli for a material are defined by equations (3.36). (3.371, 
(3.381, and (3.39). The material properties for each constituent are Ef = 30 X 

106 psi, Gf = 12 x 106 psi, vf = 0.25, E ,  = 1.0 X 106 psi. G ,  = 0.385 X 

106 psi, and v, = 0.30. Plot E ~ / U ~  and E Z / U ~  VS vt for the state of stress 
shown. Allow the volume fraction of fibers to be in the range 0.40 5 vf 5 
0.70. Assume a fiber orientation of 

(A) 8 = 30" (B) 9 = 45" (C) B = 60" 
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MECHANICAL TEST METHODS FOR 
LAMINA 

4.1 Introduction 

Birefringent coatings, holography, anisotmpic photoelasticity, and Moiri have been 
successfully used in experimentally evaluating composite materials. Topics relating 
to experimental procedures and laminate test methods are available in texts [ l  -31. 
or from periodic publications. The discussions presented herein focus on methods 
used to establish mechanical and physical properties of orthotropic lamina. 

Many test procedures and specimen gwmetries used with isotropic materials are 
not applicable to composites. For composites, one is generally concerned with 
defining load and displacement (or strain) histories throughout a specific test 
sequence using LVDTs, extensometers, or strain gages. An LVDT or extensometer 
(using optical or electrical resistance swain gages) measures the relative displace- 
ment between reference points on a specimen, and the sensing elements of either 
device are not directly applied to the specimen. An electrical resistance strain gage 
can be applied directly to the specimen. Information from each of these devices 
is processed to define the parameter(s) of interest. Procedures for accomplishing 
this are discussed in texts such as Dally and Riley [4] and is not presented herein. 
Strain gages are perhaps the most commonly used strain measuring device and are 
briefly discussed. 

4.2 Strain Gages  Applied to Composi tes  

The concept behind electrical resistance strain gages is simple and is based on the 
original 1856 findings of Lord Kelvin 141, who found that the resistance of copper 
and iron wires increased as tensile loads were applied to each. Since the applied 
loads caused changes in the original length of each wire, which are expressible as 
strains, a direct correlation between strain and resistance change is obtainable. The 
evolution of strain gage technology from the first practical application in 1938 by 
the separate efforts of Ruge and Simmons has been substantial. There are many 
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factors which can cause errors in correlating resistance change to strain, and they 
can be grouped into six categories 131: 

(a) The wire must be firmly bonded to the specimen so that its deformation accu- 
rately represents the deformation in the specimen. 

(b) The wire must not locally reinforce the structure. If it does, the deformation 
of the wire does not accurately reflect specimen deformation. 

(C) The wire must be electrically insulated from the structure. 
(d) The change in wire resistance per unit microstrain is generally small, but must 

be accurately measured. 
(e) Deformation of the structure via mechanisms other than applied loads (such as 

temperature) must be accounted for. 
(f) Aggressive environments may cause oxidation of the wire and lead to resistance - - 

changes of the wire which cause erroneous results 

The selection of an appropriate strain gage for a specific application is not a trivial 
matter, and issues such as temperature compensation, working environment and 
appropriate strain measuring circuits must all be considered for accurate collection 
and evaluation of data. These topics are beyond the scope of this text, but are 
addressed in various references [3-91. 

4.2.1 General Interpretation of Strain Gage Data 

A single element strain gage applied to a uniaxial tension specimen is represented 
in Figure 4.1. The longitudinal axis of the gage defines the direction in which 
strains are measured. Although a uniaxial state of stress exists, a state of biaxial 
strain results. Both axial and transverse specimen strains affect the strain measured 
by the gage. The relation between resistance change and a general state of strain 
is written as 141 

where AR = change in gage resistance 
R = original gage resistance 

S, = sensitivity of the gage to axial strains 
S, = sensitivity of the gage to transverse strains 
S, = sensitivity of the gage to shear strains 
E* = normal strain in the axial direction of the gage 
F, = normal swain in the transverse direction of the gage 

y,, = shear strain 

i*l2 

Figure 4.1. Single element strain gage on a uniarial tension specimen. 
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In general. the sensitivity of a strain gage to shear strain is small and therefore 
neglected. A parameter called the transverse sensitiviry factor is introduced into 
equation (4.1) and is 

K = S , / S .  (4.2) 

The numerical values for K generally range from -0.05 to 0.05, and manufacturers 
repon these numbers as percents, so that K = 5% corresponds to K = 0.05. Using 
this definition of transverse sensitivity, and setting S,  = 0, equation (4.1) becomes 

A calibration constant known as the gage factor S g  (supplied with each strain gage) 
relates the resistance change to the axial strain by A R I R  = .Sg&,. The calibration 
constant is determined from a test performed on each lot of gages being produced. 
This test is conducted by mounting a gage on a standardized beam. so that its 
longitudinal axis coincides with the direction of maximum normal strain when the 
beam is deflected a specified amount. The state of stress at the gage location is 
uniaxial tension, but a state of biaxial strain exists in which E, = -vo&,; where v0 
is Poisson's ratio of the calibration beam (generally uo = 0.285). Substituting this 
into equation (4.3) results in 

From this expression the gage factor can be defined as 

The strain experienced by the gage (in its longitudinal direction) is related to the 
resistance change by 

A R I R  
& - 

a - (4.6) 
S,  

Equation (4.6) is based on the following assumptions: (1) the gage is subjected to a 
uniaxial stress field; (2) the gage grid is parallel to the direction of the stress field: 
and (3) the gage is mounted on a material for which v = v0 used in the calibration 
test. If all of these assumptions are satisfied, the measured strain (E,) is identical 
to E,. This ideal situation seldom exists, and in general equation (4.6) should 
not be used directly. Although erroneous results obtained by direct application of 
equation (4.6) are not severe in many situations involving isotropic materials, they 
can be when considering composite materials. The percent error associated with 
using equation (4.6) directly has been established [4] and is 

The relationship between E and K for various ratios are presented in 
Figure 4.2. The ratio of transverse to axial strain is established from the 
loading conditions which produce the strain to be measured. The errors should 
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Transverse Sensitivity Factor 

Figure 4.2. Percent error associated with various Ransverse sensilivilies and &/S, rafins 
(after Dally and RiIey 141)). 

be estimated from equation (4.7) with an estimated ratio of &,/E. based on the 
material being tested. 

In order to compensate for the effects of transverse sensitivity, a minimum of two 
strain measurements is required. Assuming that a biaxial strain gage rosette is 
used (two strain gages mounted on a specimen so that two orthogonal strains are 
measured), the true strain in the X and y directions can be established from the 
measured strains [4j. Denoting E, and E ,  as the true strains, and E, and E,, as 
the measured strains, respectively, the following relationships are obtained: 

These expressions for the biaxial strain gage rosette are only applicable for that 
particular type of rosette. A variety of other types of strain gage rosette are avail- 
able. Two of these often used with composites are the rectangular and delta rosettes 
(each containing three strain gage elements). These are schematically shown in 
Figure 4.3. Relationships between measured and true strains for the rectangular 
rosette are given in Pendleton and Tuttle [3] as 

where is the measured strain for the 45" strain gage. For the delta rosette the 
relationships between true and measured strains are 
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Biaxial Rectangular Delta 

Figure 4.3. Biaxial, rectangular; and del& sfrain gage rosettes. 

Equations (4.8) to (4.10) are only valid if K is identical for each gage. For situa- 
tions in which K varies from gage to gage, the appropriate relations can be found 
in a technical note [IO]. The Cartesian strain components associated with each of 
these me strains are obtained from the swain transformation equation in Chapter 2. 

The typically low values of K that strain gage manufacturers can obtain indicate 
that measured strain gage data generally yields accurate results. This is true in 
many cases involving isotropic materials; it is not generally true for composite 
materials. Transverse sensitivity effects for composites are typically enhanced since 
the apparent Poisson's ratio for a orthotropic material is generally different from 
the v0 of the gage calibration material. The evaluation of transverse sensitivity 
effects for strain gages on composites presented by Tuttle [ I l l  is summarized 
in equation (4.3). Tests were conducted o n  unidirectional carbonlepoxy specimens 
subjected to uniaxial tension. Both axial and transverse strain gages with K = 0.03 
were used, and fiber orientations varied. The axial gage had at most a I% error 
between measured and corrected data for the worst case (fiber orientation greater 
than approximately 70"). The transverse gage, however, was shown to exhibit 
severe errors when K was not used to correct the measured strain gage data. Results 
of the analysis described in Pendleton and Tuttle [3] are presented in Figure 4.4, 

-250 1 I l I I I I I I 
0 10 20 30 40 50 60 70 80 90 

Fiber Angle (degrees) 

Figure 4.4. Percentuge error in measured hnsverse strain (without correcting for K )  vs 
8 (afler Pendieton and Tude [3]). 
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where it is seen that the percent error resulting from neglecting K is large. The 
magnitude of the measured strains for the transverse gage are considerably lower 
than the axial strains, but the errors are significantly higher. 

Example 4.1. Assume that a delta rosette (K = 0.05 for each gage) is applied to 
a unidirectional composite. The strain gages shown in Figure E4.1 indicate strains 
of E* = 23.015 pinlin, &g = 22,307 pinlin. and rc = -9936 pinlin. Neglecting 
transverse sensitivity, the strains for each gage are Ee = E, cos2 B $ E ,  sin2 8 + 
y,, sin 19 cos 8, which results in 

23,015 1 0 0 
22.10'7 x lop' = cos2 60 sin2 60 sin 60 cos 60 ] {:y } { } = { -9936 [cos2 120 sin2 120 sin l20 cos 120 

Solving this expression yields 

Figure E4.1. Del& strain gage rosette orientation. 

Using the measured strain ( E * ,  etc.) and equation (4.10) with K = 0.05 and v0 = 
0.285, the true strain for each gage is  

These strains, when used to evaluate the Cartesian strain components, result in 

A direct comparison between these results and those for K = 0.0 shows an error 
of 3.5% in the worst case for E, and y,,, but a substantial error exists for E,. 

4.2.2 Strain Gage Misalignment 

For an isotropic material the effects of poor alignment are not as critical as for 
a composite. For example, using a steel specimen and allowing a set of biaxial 
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gages to be misaligned by some angle (p), as shown in Figure 4.5, results in errors 
for both the axial and transverse gages. In Pendleton and Tuttle [3], results for a 
gage misalignment of -4" 5 B 5 4" indicate that  he maximum errors in axial and 
transverse gages were -0.63% and -2.20%, respectively. 

Figure 4.5. Guge misdignment on an &olropu specimen. 

For a composite both the misalignment ( p )  and fiber orientation angle (B) 
contribute to the errors in strain gage measurement. In Tuttle and Brinson [12], tests 
on the effects of strain gage misalignment as a function of fiber orientation were 
investigated for the specimen shown schematically in Figure 4.6. The percentage 
error in axial and transverse gages which resulted were reported in Pendleton 
and Tuttle [3] to be similar to those shown in Figures 4.7 and 4.8, respectively. 
The transverse gage experienced the most severe errors. Situations often arise in 
which the complete state of strain is required, a single element strain gage, or 
a biaxial rosette are not adequate. A strain gage rosette in which three normal 
strains are determined is recommended for such cases. The transverse sensitivity 
corrections for rectangular and delta rosettes expressed by equations (4.9) and 
(4.101, respectively are applicable in this case. Proper alignment of strain gages 
on composite can be critical when defining a complete state of strain, and care 
should be taken to ensure proper alignment. 

Figure 4.6. Guge misalignment on a composite specimen. 

4.2.3 Strain Gage Reinforcing Effects 

Strain gages applied directly to a specimen have been shown to produce rein- 
forcement errors in tests with low modulus materials such as plastics 113-161. 
It is possible that similar reinforcement effects occur in composites. Strain gage 
reinforcement is most likely to occur in regions where the geometric cross-section 
of the specimen is thin and the elastic modulus in the gage direction is  low. 
The normalized variation of E,, as defined by equation [3.19), with respect to the 
minimum elastic modulus of the material ( E 2 )  decreases rapidly with increasing 
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Fiber Angle (degrees) 

Figure 4.7. Percent error in aria1 gage (afer Pendkton and TuUk [3]). 

Fiber Angle (degrees) 

Figure 4.8. Percent error in transverse gage (arftr Pendkton and Tuttk 131). !FI---J 
.i 2 

1 

0 
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Fiber Orientahon Angle (degrees) 

Figure 4.9. Varialion ofE,/Ez wiflrper orie&n. 

fiber orientation as shown in Figure 4.9 for Scotchply 1002 glasslepoxy. The 
magnitudes of E,/E2 differ for other material systems. but the trend is the same. 
For fiber orientations of -30" 5 8 5 30", E, > 2E2, while for all other fiber 
orientations E, c 2E2.  This can influence the degree to which a strain gage will 
reinforce a specimen and provide inaccurate measures of the actual strain. 

In many practical situations the strain gage is unlikely to significantly reinforce 
the composite. Given the wide range of possible material properties available with 
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composites, there is a possibility that strain gage reinforcement can affect test 
results. Methods of accounting for the reinforcing effect of strain gages are avait- 
able 131. The procedure consists of establishing a set of correlation parameters from 
tests on a calibration specimen, and subsequently relating them to the measured 
strains on the actual specimen. A simple model for estimating the amount of fiber 
reinforcement can be defined following the procedures in Dally and Rilcy 141 for 
birefringent coatings. 

The simplest case to evaluate is uniaxial tension. Assume a unidirectional lamina 
has a single clement strain gage applied to its surface in the direction of the applied 
slate of stress (cr,) as shown in Figure 4.10a. Assume the gage is perfectly bonded 
to the specimen, there are no stress conccntrations at the specimentgage interface, 
and the load sharing between the gage and specimen can be modeled as shown in 
Figure 4. lob. 

specimen " " " L 5 4  

Figure 4-10. Model of load sharing between specimen and strain gage for unirrrirrl 
tension. 

In this figure a,, is the axial stress in the ungaged region of the specimen. Stress 
U,, and cr,, represent the axial stresses in the specimen and gage, respectively. The 
thicknesses of the specimen and gage are represented by h, and h,. Assuming the 
representative volume element associated with Figure 4.10b has a width dy, a force 
balance in the X-direction results in hsoXu dy = hSox, dy + h p x g  dy. Therefore. 

The relationship between axial strain and stress is established from equation (3.15). 
Although reinforcement effects may occur transverse to the applied load, the major 
reinforcement will be in the direction of load application. The relationship between 
applied stress and strain in the ungaged region of the specimen is 

The specimen and gage stresses are defined by a,, = E x s ~ x t ,  and U,, = EgcXg. 
respcctivdy. Using the assumption that the specimen and gage experience the 
same strain (sxg = equation (4.1 I )  becomes 
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The ratio of specimen to gage thickness can be represented as n = h,/hp. Intro- 
ducing this into the preceding equation, and rearranging it in order to relate the 
axial strains in the ungaged region of the specimen to those in the gaged region, 
results in 

The greatest reinforcement effect results when S,, is a maximum, which gener- 
ally occurs at fiber orientations of 90". For this case equation (4.12) can be 
exoressed as 

The degree of reinforcement depends on the composite material, strain 
gage material, and the ratio of specimen to gage thickness (n = h,/h,). A strain 
gage can be characterized as a plastic, so E, is typically less than Ez.  Evaluating 
equation (4.13) for various E , / E >  ratios as a function of h,/h, results in the 
distribution shown in  Figure 4.1 1, where it is obvious that the effect of strain gage 
reinforcement decreases rapidly with increasing h,/h,. It appears as if substantial 
reinforcement is present for a large range of h,/h,, but strain gages are generally 
on the order of 0.0035 in thick. Therefore. at h,/h, = 10, the specimen would be 
0.035 in thick. One should evaluate from either equations (4.12) or (4.13) 
to determine if possible errors warrant compensation. 

hslhg 

Figure 4.11. S m i n  gage reinforcement effects for uniarial tension. 

Strain gage reinforcement is more pronounced when flexure stresses exist. Assume 
a unidirectional composite lamina is subjected to pure bending. The strain vaniation 
through the specimen (E,,) and strain gage (E,,) in the region containing the gage 
are modeled in Figure 4.12. 

The distance d is used to define the location of the neutral bending axis. The 
strain gage is assumed to be isotropic, and the stresses in the gage and specimen 
are expressed as uZg = Eg&ig and U,, = = E ~ . / S ~ ~ .  respectively. Since the 
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M 

Figure 4.12. Model for strain gage reinforcement due to pure bending. 

specimen is subjected to pure bending. the swains are related to the radius of 
curvatuE by 

L = - for d - hs 5 z 5 d 
P 
Z 

(4.14) 
clg = - for d 5 z 5 d + hg 

P 

Satisfying the condition of equilibrium of forces in the X-direction requires 

Using equation (4.14) in the expressions for U,, and U,, results in 

Evaluation of these integrals yields an explicit definition of the neutral bending 
axis location d as a function of material properties and thickness of constituent 
materials: 

The ratio of specimen to gage thickness (n  = h,/hg) can be introduced into this 
expression as it was for the case of uniaxial tension, which allows equation (4.15) 
to be expressed as 

d = C l h g  (4.16) 

W here 

The radius of curvature is determined by establishing the standard conditions 
d of equilibrium for moments from M = $d-ns zuXsdz + dthg zoXgdz = 0. Using 

equation (4.14) in the expressions for ox, and rr,, results in M = 

I / p  [ E ,  L* d z  + E ,  i2 d z ]  . Upon evalwation of these integrals, it is 
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convenient to define two additional terms: 

where d is defined by equation (4.16). The curvature and bending moment in the 
strain gaged area are related by (]/p), = 3M/(E,,C2 + E&?). For an unrein- 
forced specimen the relationship between curvature and moment is easily estab- 
lished since h, = 0, d = h,/2, and uZK = 0. The resulting relationship is (Ilp), = 
I2M/EZsh:. Since c,, =z/pK and E,, = z/pu, the ratio of strains in the ungaged 
region to those in the gaged region is = pK/pu. Using the relationships for 
( l  /p), and ( I  /p), results in 

where C2 and C, are defined by equation (4.17) 

Equation (4.18) is more complex than either (4.12) or (4.13) because of the rela- 
tionships between C2. C3, d .  and the relative thickness of both specimen and gage. 
The maximum reinforcing (cI,/&,,) will generally occur for fiber orientations of 
90" with respect to the x-axis (in the x-y plane). Expressing equation (4.18) in 
terms of the elastic constants EK and E2 is not warranted for this case because of 
coupling of terms related through d. Evaluating equation (4.18) for various ratios 
of h,/h, and EK/E2 produces the results shown in Figure 4.13. At h,/hK = 10 
the best case shown (EK/E2 = 0.5) predicts = 1.17. which implies a 17% 
stiffening effect. As with uniaxial tension, the possibility of gage reinforcement 
from bending should be evaluated prior to strain gage application. 

Figure 4.13. Sfmin gage reinfarcernenl effects forfle+ure in the range U 5 h,/h, 5 10. 

The amount of reinforcing associated with a specific set of gage and specimen 
properties can be estimated from equation (4.12) or (4.1 8). If reinforcement is 
considered a potential problem, the procedures in Pendleton and Tuttle 131 can 
be used. 
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4.3 Experimental Determination of Mechanical Properties 

Nine independent elastic constants are required to define the mechanical response 
of an onhotropic lamina. In many cases of practical importance a state of plane 
stress exists and the out-of-plane material properties are not required since they are 
often approximated by in-plane properties (E2 =E, ,  etc.). The mechanical prop- 
erties generally considered to be of greatest interest are E , ,  E2, GIZ. VIZ,  and y l .  
Lamina failure strengths can be established as part of the experimental procedures 
used for determining elastic properties. A unidirectional laminate is typically used 
since individual lamina are too thin and weak in the transverse direction to sustain 
sufficient load for determining elastic moduli and failure strength. The procedures 
discussed herein are those most commonly used in establishing the properties just 
identified, and those which are typically easiest to implement. 

4.3.1 Tensile Testing 

Each previously cited material property can be established from uniaxial tension 
tests of unidirectional laminates. Although G12 can be established from uniaxial 
tension tests, discussion of shear modulus determination is reserved for a later 
section. The recommended test procedures which should be followed in estab- 
lishing these properties are described in ASTM D3039-76. 

A dogbone specimen used in uniaxial tension tests of flat coupons for isotropic 
materials is not acceptable for laminates. Establishing E l  and E2 (along with v12 
and uzl) requires test specimens with fiber orientations of 0" and 90", respectively. 
A dogbone-shaped specimen with a 0" fiber orientation will result in the formation 
of matrix cracks parallel to the fihen, and an eventual failure in the region indicated 
in Figure 4.14. A stress-strain curve generated from such a specimen may contain 
a region of valid data (up to the point where the matrix cracks begin to develop), 
but will generally not yield an accurate modulus prediction or failure strength. 

Figure 4.14. Failure meclurnism for composite dogbone specimen. 

The 90" specimen will not fail in this manner. Damage induced by machining the 
specimen into a dogbone shape may weaken the matrix to the extent that invalid 
predictions of E2 result. A more appropriate specimen is a flat coupon with end 
tabs. The end tabs help reduce the probability of failure in the grip region where 
the applied loads are transferred from the testing machine to the specimen. Without 
end tabs the normal force between the specimen and grips could crush the fibers 
in the grip region and produce premature failure. 

The standard dimensions of a test specimen depend on fiber orientation. The geom- 
etry and dimensions for 0" and 90" tensile coupons are given in Figure 4.15. The 
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Specimen Geometry 

Figure 4-15. Geometry and dimensions of U0 and 90" tensile specimens. 

gives E, & gives v,, gives E, & gives v,, 

Figure 4.16. Schematic of fiber orientalions a d  strain gage positioning for determining 
El, E t  V12, and V21. 

total thickness of a specimen depends on the number of plies in the laminate. The 
end tabs are typically 1.50 in long and 0.125 in thick. The tabs are beveled to 
allow for a more uniform load transfer from the grips to the specimen. 

Strain gages or extensometers are often used to determine the stress-strain history 
of a specimen. Using both longitudinal and transverse gages, a single test can 
produce either E , ,  v12 or EZ, v l l r  depending upon fiber orientation, as illustrated 
in Figure 4.16. Strain gages placed on the front and back of each specimen (in a 
full Wheatstone bridge) negate the effects of bending due to eccentricity of the 
load line 141. A biaxial extensometer could also be used. 

Specimcn Dimensions 
. -. . .. 

Fiber Width Number Length 
Orientation (in) of Piles (in) 

A typical set of stress-suain curves for 0" and 90" AS13502 graphitefepoxy 
tensile specimens is presented in Figure 4.17. Failure of the 90" specimen is 
matrix dominated. The fibers are capable of sustaining a far greater load than 
the matrix; therefore. the 0" specimen fails in a significantly diffennt manner. 
Along the failure surface there are jagged edges indicating that failure was not 
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Figure 4.17. Stress-sbolr curves for AS13502 gmphiie/epoxy. 

instantaneous. As the ultimate load is appmached, individual fibers begin to fail 
with an audible "ping" sound. Individual fibers will fail at slightly different load 
levels. 

4.3.2 Compression Testing 

In conducting compression tests it has been noted that a composite material may 
exhibit different tensile and compressive moduli (E,, E2,  etc.) and is termed bimod- 
ular. The influence of bimodularity on analysis techniques and failure analysis can 
be significant [17]. The failure strength is generally considered more significant 
than modulus when comparing tensile and compressive behavior. Some of the 
differences between tensile and compressive behavior can be attributed to the 
difficulty of compression testing. Slight geometric variations in the specimen may 
result in eccentric loads, which enhance the possibility of failure due to insta- 
bility as opposed to stress. There are three accepted test methods that reduce 
this possibility as described in Whitney et al. [l]. Each is briefly outlined and 
schematic diagrams of grip arrangements are presented. Strain gages are gener- 
ally used for each of these test methods. Additional compression test methods are 
available, which are presented in a survey article pertaining to compression testing 
of composites [IS]. 

I)pe I. This method is characterized by having a completely unsupported spec- 
imen with a relatively short test section length. Several types of fixtures exist for 
this method. The Celanese (ASTM D-3410-75) test fixture and associated spec- 
imen geometry are shown in Figure 4.18. The Illinois Institute of Technology 
Research Institute (IITRI) (191 test fixture uses a test specimen identical to the 
Celanese fixture and is shown in Figure 4.19. Strain gages are mounted on the 
specimen, which is loaded through serrated wedges constrained by solid steel 
bases. The Northrop test fixture [20] is simpler than the Celanese or IITRI fixtures 
and is shown in Figure 4.20. The final example of Q p e  I compression testing is 
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strain 
9age 

specimen F 
. collet 

- cylindricai 
shell 

Figure 4.18. Celanese testjixture and specimen (ASTM D 3410-75). 

specimen 

Figure 4.19. M o w d  grips for IITRI compression &sl[Z9]. 

m 
specimen 

L r ' J  fixture 

Figure 4.20. Northrop compression test specimen andJErhrre 1201. 

the NBS (National Bureau of Standards) test fixture 1211. This fixture combines 
aspects of the Celanese and IITRI fixtures and adds features that allow for tensile 
tests. The NBS fixture is shown in Figure 4.2 L. All four of the Type I test methods 
yield acceptable results, but are difficult to conduct because of load line 
eccentricity. 
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specimen 

fixture 

Figure 4.21. NBS compression test specimen andjxture [22]. 

Type 11. In this class of tests the specimens are characterized as having a rela- 
tively long test section that is fully supported. The SWRI (Southwest Research 
Institute) [22], and the Lockheed type fixtures [23] are schematically shown in 
Figures 4.22 and 4.23, respectively. Results from experiments using these grips 
are comparable to data from Type I tests. The SWRJ grip has a cut in one support 
to allow for a transverse gage to measure Poisson's ratio in compression. Longi- 
tudinal strain is measured by an extensometer or strain gage placed on the edge of 
the specimen. The specimen is a modified tensile specimen in which the overall 
length is reduced while the end tab lengths are increased. The entire specimen 
length is supported by the fixture. The Lockheed fixture uses side supports only 
over the gage section of the specimen, which is the primary difference between it 
and the SWRI fixture. 

fixture specimen 

Figure 4.22. S WRI compression test firture [22]. 

Qpe 111. The final class of compression test methods involves two sandwich 
beam specimen configurations. In each case straight-sided coupons are bonded to a 
honeycomb core, which supplies lateral support. The elastic moduli and Poisson's 
ratio are determined from relationships between applied loads and strain gage read- 
ings taken from the specimen [i]. Results of failure strengths from this method are 
usually higher than those from the other methods. The sandwich beam method can 
also be used to determine tensile properties [24J. The two specimen configurations 
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Figure 4.23. Lockheed compression lestfirture [23]. 

are shown schematically in Figures 4.24 and 4.25. The specimen in Figure 4.24 is 
referred to as the edgewise compression test specimen and is used to determine E? 
and u, from the initial linear portion of the load-displacement curves generated 
during testing. The applied load is assumed to be distributed equally between the 
top and bottom specimens. The core is assumed to carry no in-plane load and is 
intended to supply lateral stability so that the potential for buckling is reduced. 
The elastic modulus and Poisson's ratio are determined from strain gage readings 
to be 

!L\+\-Y 

straln gages 

specimen 4/ 

Figure 4.24. Sandwich beam edgewire compression test conJiguration [I]. 

The specimen in Figure 4.25 is somewhat different because it is loaded in four- 
point bending. The specimen is the top sheet, which experiences compression. The 
bottom face sheet is in tension and is metal. Since the sandwich beam is subjected 
to flexure, various parameters (metal face sheet strength, core cell size, etc.) can 
be changed to achieve the desired compression failure of the specimen [24. 251. 
Poisson's ratio for this specimen is determined from direct strain gage readings to 
be v,, = - E , / E ~ .  The elastic modulus E, is somewhat harder to establish since it 
requires an assumption of uniform deformation in each face sheet while bending 
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strain 
gages 

specimen a / r 

Figure 4.25. Four-point bend sandwich beam compression test [I]. 

stresses in the core are neglected. The approximation of Ex is 

E, = 
PL 

4bh~,(2t + h + h') 

4.3.3 Shear Tests 

The material properties in the plane of lamination ( l  -2) are commonly termed in- 
plane, while those in the 1-3 and 2-3 planes are known as interlaminarproperties. 
As with extensional and cornpressive properties, the in-plane (1-2) properties are 
generally of more interest for classical laminated analysis than interlaminx proper- 
ties. Five commonly accepted methods for in-plane shear testing are presented next. 
One of these procedures contains discussions applicable to interlaminar properties. 
The short beam shear test, commonly used to define inteelaminar shear strength, is 
discussed in Section 4.3.4. Discussions regarding the cross-beam sandwich, picture 
frame panel, and slotted tension test procedures for establishing shear properties 
are not considered herein. but may be found in various articles, including Lee and 
Munro [26]. In each of the test methods discussed, strain gages are typically used. 

1. Torsion. Torsion of round specimens produces a slate of pure shear, which is 
optimum for determining the in-plane shear modulus. Two types of round speci- 
mens, either a solid rod or hollow tube. can be used. 

Solid Rod. This specimen consists of a unidirectional rod, generally machined 
from a square bar. The shear stress distribution in this type of specimen is 
known to vary linearly with distance from the center of the specimen according 
to s = T p / J ,  where T, p, and J arc the applied torque, distance from the rod 
center, and polar area moment of inertia, respectively. Knowing the applied 
toque allows for a simple prediction of stress on the outside surface of the rod. 
Using strain gages to determine the shear strain as a function of applied load 
gives a simple procedure for developing a r -y  curve. The solid rod configu- 
ration is not used too often for two reasons: ( 1 )  A typical load-displacement 
( T - 4 )  diagram has a large region of nonlinear response, and therefore, only 
a limited region of the curve provides useful data; and (2) a solid specimen 
is expensive and difficult to produce. 
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Hollow (Thin-Walled) Tube. This specimen configuration is the most desirable 
from a mechanics viewpoint, since the shear stress is approximately constant 
over the wall thickness [27]. The actual variation of shear strain from the 
inner to outer surfaces of the specimen can be evaluated using strain gages 
applied to both surfaces. Proper application of a gage to the inside surface is 
difficult. A single element gage oriented at 45" to the axis of the specimen 
(Figure 4.26) provides a simple analysis tool for defining shear strain since 
y,, = 2 ~ ~ ~ .  AS an alternative to the single element gage, a biaxial rosette can 
be used. The biaxial rosette should be applied so that each sensing element is 
at 45" to the axis of the specimen (Figure 4.26). The strains indicated by the 
$45" and -45" gages should be equal in magnitude, and opposite in sign. The 
shear strain is the summation of the individual readings. A third possibility 
is a rectangular rosette applied so that the gages are oriented as indicated 
in Figure 4.26. The &45" gages provide the same information as the biaxial 
gage, while the gage aligned with the axis of the tube provides a measure 
of the extent to which pure torsion is achieved. This gage should indicate no 
strain, or a very small strain which remains constant with increasing torque. 
Although axial strains are not uncommon because of compressive end forces 
exerted on the specimen by the torsion machine, they should be smaH and 
relatively insignificant when compared to the shear strains. 

cial biaxial 
rBCtaM;llar l 1 h 

rosette rosette \ 

Figure 4.26. S h i n  gage orientations on torsion specimens. 

The approximately constant through-the-wall shear stress in the hollow tube 
specimen produces a good r -  y curve. Two problems associated with this test 
procedure are the expense of producing a hollow thin-walled tube, and the fact 
that a tube can be crushed by the end loads required to secure it to the torsion 
machine. One acceptable approach to gripping has been presented by Hahn and 
Erikson [28], and is schematically shown in Figure 4.27. This configuration 

attachment to \ torsion machine ,- ---- adhesive 

pin h 
tube 

Figure 4-27, Grips for torsion testing composite tubes [28]. 
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provides a rigid base for clamping and adequate load transfer through pins 
and glue to the thin-walled torsion specimen. Variations to this adaptive end 
configuration are easily devised. The wall thickness to diameter ratio should 
generally be less than 0.030 to ensure a uniform stress distribution. 

2. Shear Rail Test. The shear rail test is easier to prepare and conduct than the 
torsion tests. There are two acceptable configurations for the shear rail test: two-rail 
and three-rail. A schematic of the load fixture for each is shown in Figures 4.28 and 
4.29. respectively. Both configurations are attributed to the ASTM D-30committee. 
The specimen is simple to construct and machine. The suggested overall dimen- 
sions and hole sizes for both the two- and three-rail specimens are shown in 
Figure 4.30. 

apparatus 

. specimen 

Figure 4.28. Two-rail shear appcrratus and specimen. 

Figure 4.29. Three-mmI shear rrppamtus and specimen (l]. 
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0.500" Dia 6 (VP) 
0 0- 

0 0 0- 

0 0 0- 

Figure 4.30. Specimen geometry for two- and three-rail shear tests [26]. 

For both the two- and three-rail configurations the shear stress in the strain gaged 
region of each specimen is defined in terms of the applied load P and the specimen 
thickness (h), as well as the distance between each vertical rail (b). The shear stress 
for each configuration is approximated by 

t,, = I (two-rail) 
bh 

(three-rail) 

Because of the method of load application, free surfaces at the top and bottom of 
each specimen experience large normal stresses concentrated at the corners [29]. 
A length-to-width ratio of 10:l has been shown to approximate a state of pure 
shear stress, provided the edges are perfectly clamped. The requirement of perfect 
clamping can be met if the bolts in the rails each apply the same clamping pressure 
to the edges. Since a state of pure shear is only approximated with the two- and 
three-rail configurations, a single element strain gage oriented at 45" to the load 
axis may not adequately define the true state of strain. 

3. 10" Off-Axis Test. An off-axis test is generally performed in order to establish 
stress-strain responses in directions other than the principal material directions. 
The off-axis test is a tension test and no special fixtures or specimen preparation is 
required. Consider the unidirectional test coupon loaded as shown in Figure 4.3 1. 
The rectangular rosette in this figure is not required for establishing GI2. Its pres- 
ence is solely for the purpose of indicating that an off-axis test can be used for 
defining more than one parameter. The strains indicated by each gage in the rosette 
are related to Cartesian ( X - y )  strains by the strain transformation relations in 
Chapter 2. The relations between gage strain and the Cartesian strains are E, = E*, 

E, = EC, and y,, = 2EB - E* - EC, where &A, &B, and EC are the strains indicated 
by gages A, B, and C, respectively. 
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Figure 4.31. Ofleis &S# specimen. 

The normal stress a, and swain E, (from strain gage measurements) are related by 
E, = a,/&,. E, is a function of fiber orientation, shown in equation (3.19) as 

Assuming that E l .  E2, and v12 are known, and that E, is defined from testing 
the specimen of Figure 4.31, the only remaining unknown is G12, which can be 
determined from the foregoing equation. 

The uniaxid state of stress results in a biaxial state of strain in the specimen. 
Chamis and Sinclair (301 deduced from theoretical and experimental results that the 
best angle for establishing G a p  is 100. The 10" angle was chosen since it minimizes 
the effect of longitudinal and transverse tensile stress components 01 and a2 on the 
shear response. A comparison of the 10" off-axis procedure with other approaches 
has shown it to produce reasonable results for in-plane shear properties i31]. The 
simplicity of the 10" off-axis test for establishing Glz should not be taken for 
granted, since problems can result from the specimen being orthotropic. 

A uniaxial tensile stress in an orthotropic specimen can result in a shear-coupling 
deformation as shown in Figure 4.32a. Constraints imposed on the specimen by 
rigid clamping forces at the ends (Figure 4.32b) impose other testing difficul- 
ties [32]. Clamping at the end of the specimen prohibits localized rotation and 
produces a nonuniform strain field. A uniform strain field can be developed at 
the center of the specimen provided L / w  is sufficiently large 1321. The specimen 

Figure 4.32. Efects of end consbaints on 08-axis tensile specimens. 
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length is considered to be the region between end tabs. The effect of shear coupling 
can be defined by the shear coupling ratio, ay = yXr/ex. It can be shown that qry 
is a function of the stiffness matrix such that 

The relationship belween the apparent modulus Ef (established during testing) and 
the actual modulus E, is 

E, = (1 - q)E: (4.2 1 ) 

where 

As L/w increases, r] decreases and E, approaches E:. The actual value of (L/w) 
at which one can assume the shear coupling to be negligible is dependent on the 
material system and fiber orientation being considered, as well as on the tolerable 
error. 

4. losipescu Shear Test. The Iosipescu shear test [33] is similar to an antisyrn- 
metric four-point bend (AFPB) test method for composites [34]. The major differ- 
ence is that for the Iosipescu test, the shear force through the test section is 
equal to the applied load. The Iosipescu test fixture and specimen are shown in 
Figure 4.33. This test procedure can be applied to composites for determining 
material properties in the 1-2, 2-3, and 1-3 directions 1351. The appropriate 
fiber orientations for determining in-plane and interlaminar properties are shown in 
Figure 4.34. This test method is versatile and allows for determination of a wider 
variety of material properties than other procedures. Analysis of the procedure 
has led to the evolution of several specimen and fixture geornetries. The Univer- 
sity of Wyoming Iosipescu test specimen and fixture [36] is commonly accepted 
as producing reliable results. Techniques for specimen preparation and modified 
testing procedures to eliminate variability of results have been introduced by Lee 
and Munro [37]. 

Figure 4.33. Schematic of Iosipescu test fixture and specimen 1351. 
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lnterlarninar shear stresses 
1-3 and 2-3 planes (20 lamina) 

3-1 and 3 2  planes (5 lamina) 

Figure 4.34. Specimen configur&ns for deter in idon of shear properties f m m  the 
Iosipescu test procedure 1351. 

5. [f45]& Coupon Test. This procedure involves a uniaxial tension test of a 
[+45]2, laminate, with strain gages. Although a biaxial rosette is sufficient, a 
three-element rosette provides additional information that can be used to verify 
the state of stress in the specimen. Specimen preparation and testing are identical 
to a conventional tension test. A complete discussion of this procedure will not 
be presented at this point since the specimen is a laminate. Further discussions of 
this procedure are deferred until laminate analysis procedures are established in 
Chapter 6. Results from the (i4512, test are in good agreement with those from 
other procedures, and it is considered to be a reliable test configuration. 

4.3.3.1 Summary of Shear Test Methods 

A definitive conclusion as to which of the available procedures for establishing 
shear properties is "best" would be difficult to defend, since some procedures 
work better with one type of material than another. Evaluations of several proce- 
dures 1381 indicate that more than one procedure can be categorized as appropriate 
for defining in-plane shear properties. Lee and Munro [37] attempted to eval- 
uate nine experimental procedures for determining in-plane shear properties. They 
established 11 criteria within four broad categories relating to a successful exper- 
iment. These categories are fabrication cost. testing cost, data reproducibility, 
and accuracy. Each criterion was rated from 0 to 10. with 10 the highest, and 
a weighting function was applied to each. Both the rating and weighting functions 
of each criteria are subject to author preference. Table 4.1 presents the raw score 
and overall rating for each method discussed in Adams and Walrath [36]. Three 
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of the procedures presented in Table 4.1 have not been discussed herein, but can 
be found in the archival literature relating to composite materials testing. 

Tdle 4.1. Evaluation of in-phne shear 
test methods 1371. 

Test Procedure Raw Score Rating 

Two-rail shear 
Three-rail shear 
l k451s 
10" off-axis 
Cross-beam 
Picture frame 
Thin-walled tube 
Slotted-tensile 
losipescu 

4.3.4 Hexure Tests 

There are two commonly used loading conditions for flexure testing: three-point 
and four-point bending. Each is shown schematically in Figure 4.35 with the 
general specimen geometry. The L/4 load reaction position in the four-point bend 
configuration is sometimes replaced by an L/3 reaction position. The L/4 location 
is generally used with high-modulus materials (graphitelepoxy, boronlepoxy. etc.). 
The objective of these tests is  to determine flexure strength and material modulus 
in specific directions. These tests are not recommended for generating design data. 
The flexure test can be used to determine interlaminar shear properties. 

Fiber dentations for determining 

! ; z n T  z, 
~ L L  d 

r 
Specimen geometry 

&point bend 

L u 2 A  U2,1 

4-point bend 

Figure 4.35. Schematic of three-point and four-point bend tests. 

Requirements for specific types of flexure tests (specimen dimensions, loading rate, 
etc.) are given in ASTM D790-71. Unidirectional specimens with fibers oriented 
at either 0" or 90" to the beam axis can be used to determine the elastic modulus 
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of a material. The modulus along the beam axis of the specimen is generally 
designated as E,, and, depending upon fiber orientation, corresponds to E ,  or 
Ez .  The appropriate fiber orientations corresponding to estimates of El and E2 
for flexure specimens are shown in Figure 4.35. The recommended span to depth 
ratio, L/h. for a flexure specimen depends on the ratio of tensile strength parallel 
to the beam axis and interlaminar shear strength. For 0" specimens with a strength 
ratio less than 8:1, the recommended L/h ratio is 16. For high-modulus materials 
(such as graphitetepoxy or boronlepoxy) an L/h ratio of 32 is suggested. The 
requirement on a 90" lamina is less severe, and Llh = 16 is generally acceptable 
for all materials. 

Estimating the modulus for 0" or W" specimens requires knowing the deflec- 
tion (W) of the center of the beam. Given the beam width (d),  center span deflec- 
tion (W), applied load (P),  and beam length (L), the elastic modulus along the 
beam axis (E,) for each configuration can be determined from strength of mate- 
rials techniques. For the four-point bend specimen the deflection at mid-span 
(X = L/2) is Exlw = llPL3/768. For a beam with cross-sectional dimensions as 
shown, I = bh3. This results in the elastic modulus for the beam being expressed 
as E, = l l PL3/64bh3w. A similar approach is used for the three-point bend spec- 
imen. If shear deformation is considered, these equations contain an additional 
term. The predicted elastic modulus for each configuration (including shear defor- 
mation) are as defined in Whitney et al. [I]: 

PL3 
E -- ( 1  + S )  (three-point bend) " - 4bh3w 

PL3 
E -- " - 64bh3w 

( l  1 + 8s) (four-point bend) 

where S is the shear correction factor, which is a function of specimen geometry 
and deformation. General definitions of the shear correction factor are found in 
many strength of materials texts. For a rectangular cross-section the expression 
for S is 

3h2E, 
S =  - 

2LZG,, 

In this expression G,, is the shear modulus in the longitudinal plane through 
the thickness of the specimen. It is difficult to determine and in many cases is not 
adequately known. It can be neglected by allowing the shear correction factor (S) to 
be set equal to zero, thus reducing the preceding equations to a simpler form. With 
S = 0 each of these expressions is a simple function of ( ~ f h ) ~ .  In order to estimate 
E,, a series of tests with increasing Lfh ratios of the specimen are conducted. The 
modulus E, for each test is computed, and when a constant E, is obtained between 
several test specimens, the modulus is considered to have been determined. 

An additional type of flexure test is the short beam shear test. Unlike the flexure 
tests, this test is designed to estimate interlaminar shear strength only. There are 
difficulties associated with it, and its overall value is questionable. The procedure 
and specimen dimensions for this test are discussed in ASTM D2344-76. The 
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specimen should be designed so that shear deformation effects are as large as 
possible, and failure results from interlaminar shear stresses rather than normal 
stresses. The ratio Lfh should be small (Lfh = 4 is suggested for graphitetepoxy). 
and a three-point bend test is used. The specimen has a parabolic shear stress 
distribution through the thickness, and the maximum shear stress may not be at 
the mid-surface of the beam. For the short beam shear test the interlaminar shear 
strength is expressed as 

where K,,, is the maximum interlaminar shear stress, P is the applied load, and b 
and h are the beam width and thickness, respectively. 

4.3.5 Failure Strengths 

The failure strengths of unidirectional composites (lamina) can be determined from 
the same tests used to estimate moduli. The failure strengths in the principal fiber 
directions require both tensile and compressive tests. Shear strength, on the other 
hand, is independent of load direction. 

4.4 Physical Properties 

The physical properties of a composite material system can be as important as 
mechanical properties in assessing suitability for a particular application. The prop- 
erties of most practical interest from a stress analysis point of view are density, 
fiber volume fraction, and coefficients of thermal and hygral expansion. The general 
procedures used to estimate these properties are highlighted in this section. 

4.4.1 Density 

The density can be determined by first preparing a specimen with a volume on the 
order of v 2 1 cm3 (0.061 in3). The procedure for estimating density is: 

I .  Accurately determine the specimen dimensions. 

2. Weight the specimen in air. The weight of the specimen in air is designated 
as a. 

3. Weigh the specimen in water while suspending it by a wire. As part of this 
step, the weight of the wire (used to suspend the specimen) and the sinker 
(used to ensure that the specimen is submerged) must be taken into account. 
Therefore, two additional terms must be accounted for: W, the weight of sinker 
and immersed wire, and b  the specimen weight + W .  

4. Calculate the lamina density in mg/m3 from 

0.99751 
P = a f w - b  

where 0.9975 is a conversion factor from specific gravity to density. 

A complete description of this procedure can be found in ASTM D792-66 
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4.4.2 Fiber Volume Fraction 

In order to estimate the volume fraction of fibers in a given specimen, a series of 
tests is required. Results from some of these tests are sensitive to measurements 
taken during the experiment. The procedures to be followed are based on the 
assumption that a small specimen ha5 been prepared from a larger sample of the 
lamina under investigation. The general procedures are: 

1. Determine the weight of the composite sample ( W c )  and its density (p,) as 
described in the previous section. 

2. Allow the matrix to be digested either by an acid bath or by burning it  away. 
The appropriate procedure is dictated by the fiber material. Graphite fiben, for 
example, require acid digestion, while glass fibers can be burned. 

3. After the matrix is removed, only the fiber remains. The fiber weight (Wr) and 
density (pf) must then be determined from procedures established in Section 
4.4.1. The volume fraction of fiber is then estimated from 

Similar procedures can be used to determine the volume fraction of voids. The 
mass fractions of fiber and matrix, and their respective densities are required to 
compute U,. Slight errors in measurements can lead to significant errors in estimates 
of volume fractions. In estimating U, the relationship developed in Section 3.4 is 
useful: 

4.4.3 771ermal Expansion and Moisture Swelling Coefficients 

Coefficients of thermal expansion can be determined by using a dilatometer, or 
strain gages. A dilatometer measures the elongation of a specimen subjected to 
either high or low temperatures. The strains in the x and y directions (which could 
represent the 1 and 2 directions of a lamina) can be determined by E, = Axfb and 
ey  = A y l a ,  where Ax and A y  are specimen deformations recorded by deflection 
gages, and a and b are the lengths of each side. The strains could alternatively be 
measured from strain gages. Each strain is plotted as a function of temperature. The 
slope of the resulting curve in the linear portion of the graph is taken to represent 
the coefficient of thermal expansion a, as illustrated in Figure 4.36. Different 
expansion coefficients can be observed during heating and cooling cycles of a test 
sequence. 

The moisture swelling coefficients are determined in a manner analogous to that for 
estimating thermal expansion coefficients. By measuring the volume change in a 
specimen as a function of moisture weight gain, a plot similar to Figure 4.36 can be 
established for moisture. The slope of the resulting curve represents the coefficient 
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Figure 4.36. Schematic for delerminaIion of a. 

of expansion. Compilation of sufficient data to establish swelling coefficients can 
be a long process, since temperature and humidity are coupled. 

4.5 Material Properties of Selected Composites 

Tables 4.2 and 4.3 present material properties for selected composite materials in 
English and S1 units, respectively. These tables are by no means comprehensive. 
Many possible materials, such as thermoplastic, metal, and ceramic matrix systems, 
have been omitted. Material properties for these types of composites can be found 
in numerous references 139-411. Some of the more common epoxy resin material 
systems are presented. The primary references from which most data is taken are 
cited. Entries marked by an asterisk are obtained from various references 142-441 
or from vendor-supplied data sheets. The following notations are used for strength 
properties: 

X, X' are tensile and compressive strength in 1-direction, respectively 
Y. Y' are tensile and compressive strength in 2-direction, respectively 
S is shear strength 

In Table 4.2 the notation Msi replaces the more familiar 106 psi notation commonly 
associated with elastic modulus. 

The entries in each table illustrate the variations that exist in reported proper- 
ties for materials. This can, to some extent, be explained as a result of specimens 
having different fiber volume fractions. Similarly, specimen preparation and testing 
procedures can affect results. Material moduli, failure strength, and coefficients of 
thermal and hygral expansion are dependent on testing environments. Many mate- 
rial manufacturers supply mechanical data based on different test temperatures 
and expansion coefficients for a range of temperatures. The data presented in 
the tables herein are for room temperature test conditions. The thermal expan- 
sion coefficients are based on a temperature range from room temperature to an 
appropriate elevated temperature (typically 200°F). The lack of data for thermal 
and hygral coefficients is apparent, but does not imply that this information is 
unimportant. 
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Table 4.2. Mate~lproper t ies  for selected composite d e M l  systems (English units). 

Mnferinl VJ El Ez Ga VIZ X X' Y Y' S a1 aa B1 
(rrferencel (Msi) (Msi) (Msi) ( h i )  ( h l )  ( h i )  ( h i )  ( h i )  

5 " 
Grsphite/Epoxy 

T30015208 
f 

l421 0.70 26.27 1.49 1.04 0.28 217.7 217.7 5.80 35.7 9.86 0.011 12.47 0.00 0.44 1 
[43] 0.70 22.20 5 1.03 0.30 100.0 110.0 4.M 13.9 9.W - - - 

T3001934 143) 0.60 23.70 1.70 0.93 0.30 107.0 105.0 - 14.8 - - K 
T300lSP-286 (431 0.60 21.90 1.53 0.96 0.31 185.6 362.6 8.80 44.7 15.2 - - - 
AS13501 I421 0.66 19.90 1.29 1.03 0.30 210.0 210.0 7.50 29.9 13.5 -0.17 15.57 - 

(431 0.67 20.02 1.30 1.03 0.30 209.9 209.9 7.50 29.9 13.5 - - - - 
GlsralEpaxy 

Scotchply: 
type 1002 (421 0.54 5.60 1.20 0.60 0.26 154.1 88.5 4.50 17.1 10.5 4.77 12.24 - 
rype SP-250-S29' 0.54 7.00 2.10 0.80 0.26 260.0 145.0 6.20 29.0 14.0 - - - - 

E-GlassEpoxy (431 0.72 8.80 3.60 1.74 0.23 187.0 119.0 6.70 25.3 6.50 3.50' 11.4' - 
S-GlassMP.251 0.67 8.29 2.92 0.86 0.262 289.0 170.0 lI.W 29.0 9.W 3-60' 11.1' - - 

Boron/Epxy 

B(4)15505 1421 0.50 29.60 2.69 0.811 0.23 183.0 363.0 8.90 29.3 9.70 3.38 16.79 - 
1431 0.67 30.30 2.80 0.930 0.21 185.6 362.6 8.80 44.7 15.2 3.40' 16.9' - 

Arsmid/Epoxy 

Kevlar 49Epoxy (421 0.60 11.03 0.798 0.333 0.34 203.2 34.1 1.74 7.69 4.93 -2.22 43.77 - 
(431 0.60 11.02 0.798 0.334 0.34 2031 34.1 1.74 7.69 4.93-2.2' 39.0' - - 

Note: 'lhe uniu on the coefficients of thermal expansion are winlinPF. 
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Table 4.3. Materinl orooerries for selected comoosite materin1 svstems (S1 anifs). 

Note: The unitr on the coefficients of thermal expansion are pmlmPC. g 
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Tuble 4.4. Malerial properties of selecledflers and resins (English units). 

Mslerial Diameter Density Elastic Modulus Y Tensile Strengih a 
a 

[reference] (in x10-'1 (Iblin3) (Msi) W l )  (11inlinPF) Q 
z 
B 

?..Glass 
Graphite 
Carbon 
(Pan-based) 
Kevlar 49 

Kcvlar 29 
Boron 

Polyimid i45 i 0.40 0.33 
1471 p 0.053 17.4 

Polyester 1461 - 0.430-0.540 0.35-0.65 0.37-0.39 5.8-13.0 
Phenolic 1471 0.047 7.2-8.0 
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Table 4.5. Mafe~lpropertr'es of selectedjbers and resins (S1 units). 

Materid Diameter Density Elmtic Modulus Y Tensile Strength LI 

[reference] W (kglm3) (GP) (Mpa) d d C )  

E-Glass 1451 10.0 2547 72.3 
1461 8.0- 14.0 2560 76.0 

S-Glass c451 100 249 1 84.8 
Graphite 1451 5.0- 100 1467-1799 241.0-690.0 
Carbon 1461 7.0-9.7 1750- 1950 250.0-390.0 

Kevlar 29 i47i 12.0 
Boron 1421 100.0 

1451 100.0 

Polyester 
Phenolic 

3102 5.1 
1400-2500 4.9 

M P I  
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4.6 Testing Lamina Constituents 

Complete characterization of a composite material includes fiber and mafrix prop- 
erties. Both physical and mechanical properties are determinable in many cases. 
Because the constituent materials are typically isotropic, some of the complex- 
ities of testing orthotropic lamina are reduced, while some tests applicable to 
lamina are not appropriate for the constituents. For example, compression testing 
of single fibers cannot be accomplished. Tensile testing of fibers. however, is 
a well-esldblished procedure as discussed in detail in ASTM D3379-75. Special 
test fixtures, such as the one schematically shown in Figure 4.37, as well as data 
reduction procedures are required for testing fibers. 

specimen fixture 

Figure 4.37. Schematk of testfirmre f o r p e n .  

Since fibers can only be tested in tension. the basic properties generally estab- 
lished for resin systems are tensile. The procedures for testing different polymeric 
resin systems depend on the availability of the material as either a thick sheet or 
thin film. The test procedures and specimen configurations for thick sheet forms 
of material are detailed in ASTM D638-72. Similar information corresponding 
to thin film material is available in ASTM D882-73. An appropriate procedure 
for characterizing them depends on their general classification as elastic, plastic. 
viscoelastic, etc. Tables 4.4 and 4.5 present a range of values for some of the phys- 
ical and mechanical properties of selected fibers and resins systems in English and 
S1 units, respectively. 
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4.8 Problems 

4.1 Assume that a uniaxial strain gage is mounted on a unidirectional tensile 
specimen made of T30015208 graphitelepoxy. The gage is oriented as shown 
and the specimen is subjected to an applied load oo as indicated. Determine 
the percent error resulting from neglecting transverse sensitivity for 

(A) K = 0.40% (B) K = - 1.5% 

4.2 The strain gage of Problem 4.1 is applied to a T30015208 graphitelepoxy spec- 
imen as indicated. Determine the percent error which results from neglecting 
the transverse sensitivity for 

(A) K = 0.40% (B) K = -1.5% 

4.3 A uniaxial strain gage is used to measure the maximum tensile strain on the 
outside surface of a closed-end pressure vessel subjected to an internal pressure 
P. The vessel is made from a unidirectional graphitelepoxy (AS13501) with its 
fibers oriented along the longitudinal axis of the vessel. Determine the percent 
error resulting if transverse sensitivity is neglected. [Hint: Determine the stare 
of stress in the vessel using classical thin-walled pressure vessel theory.] 

(A) K = 0.40% (B) K = -1.5% 

4.4 The results from a uniaxial tension test on AS13501 graphitelepoxy are 
presented below. Find El, E 2 ,  u l2 ,  1112, X, and Y. 

Axial Slrain (pidin) Axial Strain (piMn) 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



4.5 The four-point bend sandwich beam compression test is schematically shown 
in Figure 4.25. In the region of the beam where the bending moment is 
constant, the forces in both top and bottom layers can be modeled as shown. 
The bending moment at section A-A in this section can be expressed in terms 
of the applied load P and the beam length L. 

(A) Determine the relationship between F , ,  F2, I, h, h', and the bending 
moment at section A-A expressed in terms of P and L. 

(B) Assuming that F ,  = F?, determine the expression for E, which is known 

4.6 The Iosipescu shear test is schematically shown in Figure 4.33. A schematic 
of the loads that the fixture transmits to the specimen is shown in Fig. A; a 
schematic of the loads experienced by the specimen is shown in Fig. B. 
(A) Use Fig. A to verify that P I  = Pa/(a - b) and P2 = pb/(a - b). 
(B) Use Fig. B to show that the specimen test section (the vertical plane 

through the notch) experiences a shear force equal to the applied load P 
and no bending. 

P I 
Fig. A Fig. B 

4.7 A schematic diagram for the asymmetrical four-point bend (AFPB) shear 
loading fixture (341 is shown below. For this test configuration. verify that 
the shear force in the specimen test section (the vertical plane through the 
notch) is riven as 

a - b  
v=p- 

a + b 
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4.8 Experimental data from thermal expansion tests are presented below for three 
types of materials. From this data, determine the coefficients of thermal expan- 
sion for each material. 

- Kevlar l direclion 
Kevlar 2directim 
SGlass l direction 
S-Glass 2d~rec(wn 
Graphile Idirection 
Graphite 2directmn 

Temperature (OF) 
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LAMINA FAILURE THEORIES 

5.1 Introduction 

The bond between adjacent lamina in a laminated composite is assumed to be 
perfect and is not considered when discussing in-plane failure theories. Special 
consideration is given to failures involving interlaminar stress, which is beyond 
the scope of this text. Models and analysis techniques used to address interlaminal 
failure are summarized by Pagano [l]. 

The mechanisms for complete laminate failure are best understood by first consid- 
ering lamina failure. Fiber orientations of adjacent lamina in a laminate may be 
different; thus, the apparent stiffness in specific directions may vary through the 
laminate. The state of stress experienced by individual lamina can be correlated to 
the effective stiffness of the lamina. Early efforts by the paper products industry to 
predict failures in orthotropic materials led to current failure theories for composite 
materials. Detailed reviews of many failure theories have been presented [2-81. 
None of the orthotropic failure theories currently available are considered accurate 
enough to be used as a sole performance predictor in design. They all tend to be 
phenomenological and empirical in nature rather than mechanistic. 

Failure of a unidirectional laminate begins on the microscopic level. Initial micro- 
scopic failures can be represented by local failure modes, such as: 

Fiber failure -breakage, microbuckling, dewetting 
Bulk matrix failure - voids, crazing 
Interfacelflaw dominated failures - crack propagation and edge delamination 

Microscopic failures can become macroscopic and result in catastrophic failure. 
The general nature of failure for orthotropic materials is more complicated than 
for an isotropic material. Consider, for example, the state of stress indicated in 
Figure 5.1. If the material were isotropic, a simple Mohr's circle analysis would 
yield the principal stresses shown and $ = 31.7". Mohr's circle analysis of strain 
results in the same principal angle. 
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500 psi 

Figure 5.1. Mohr's circle for a simple state of plane stress. 

Alternatively, consider an orthotropic material subjected to the same applied 
stresses. The assumed compliance matrix for this material and the resulting strains 

A Mohr's circle analysis would show a principal angle different from that of an 
isotropic material, indicating that analysis techniques valid for isotropic materials 
are not adequate for composites. 

A lamina is stronger in the fiber direction than in the transverse direction. The 
largest stress on the lamina may not be the one that causes failure. Assume the 
failure stresses are as follows: 

X = Maximum failure strength in l-direction = 50 ksi 

Y = Maximum failure strength in 2-direction = 1 ksi 

S = Maximum shear failure strength = 2 ksi 

The state of stress is assumed to be 

{ zi } = {y } ksi 
t12 

It is obvious that failure in the l-direction (maximum stress direction) will not 
occur, but in the 2-direction it will. 

There are numerous theories for predicting lamina failure, a summary of which is 
given in Rowlands [2]. In this text two failure theories are considered in detail. In 
the following discussions, the notation is used for identifying failure strength in 
various directions: 

X,X1: Maximum tensile and compressive failure strengths in the longitudinal (fiber) 
direction 

Y,Y1: Maximum tensile and compressive failure strengths in the transverse (X2) 
direction 

S: Maximum shear failure strength 
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The prime (l) denotes compression. Tensile and compressive failure strengths of 
continuous fiber laminates are generally different. The sign of an applied shear 
stress does not influence the failure strength in shear, but can affect predicted 
failure loads. 

5.2 Maximum Stress Theory 

This theory is commonly attributed to C. F. Jenkins [9], and is an extension of 
the maximum normal stress theory for the failure of orthotropic materials (such as 
wood). Consider a lamina subjected to uniaxial tension as shown in Figure 5.2. For 
a failure to occur according to the maximum stress theory, one of three possible 
conditions must be met: 

Figure 5.2. Uniaxial tension for a unidirectional lamina. 

In this case the stresses in the principal material directions are 

where m = cos8 and n = sine. To ensure that failure does not occur under the 
conditions represented in equation (5.1), the stresses in the principal material direc- 
tions must be less than the respective strengths in those directions such that 

X Y S 
u x  l - 

cos2 8 
0.x l - o x  l 

sin2 8 sin 8 cos 6 

If the applied stresses were compressive, the X and Y would be replaced by X' 
and Y'. so that the failure conditions become 

The failure criterion for shear remains unchanged, since S is independent of the 
sign of the applied shear stress. 

If any one of the inequalities is not satisfied, it is assumed that failure occurs. 
In cases of multiaxial stress, the simple relationships just given are no longer 
valid. The relationship between applied stress components and principal mate- 
rial direction stresses must be determined through stress transformation, while the 
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inequalities in equations (5.1) and (5.2) remain valid. For example, assume a general 
state of stress in which a,, a,, and r,, exist. The principal direction stresses and 
condition for failure to occur for this case are 

5.3 Maximum Strain Theory 

The maximum strain failure criteria is an extension of St. Venant's maximum strain 
theory to accommodate orthotropic material behavior. The maximum strain failure 
theory is expressed as 

For a case of uniaxial tension as in Figure 5.2, 

The principal material direction stresses are a1 = m2%, 0 2  = n2ax, and rl2 = 
-mnax. Therefore, it is a simple matter to show that 

From these relationships it is easy to show that in order to avoid failure for a 
condition of uniaxial tension, the following conditions must be checked: 

The maximum stress and strain failure theories generally yield different results and 
are not extremely accurate. They are often used because of their simplicity. As 
with the maximum stress theory, a more complex state of stress results in different 
expressions. As discussed in the previous section, a more general state of stress 
results in a more complex representation of 61, 62, and yl2. 

Example 5.1. The composite reinforced pressure vessel in Example 3.3 is consid- 
ered again. The analysis presented here incorporates actual material properties as 
defined in Table 4.2. The analysis procedure in Example 3.3 relating normal stress 
(a,) to reinforcement spacing ( S )  is used in this example with a, = 7200s. It is 
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assumed that the vessel has failed and the reinforcements sustain all circumferen- 
tial loads originally carried by the vessel as illustrated in Figure E5.1-1. Both the 
maximum stress and strain failure theories are investigated. Assume the reinforce- 
ments are E-glasslepoxy. Because of the state of stress, only tensile failure strengths 
are considered, with X = 187 ksi, Y = 6.7 ksi. and S = 6.5 ksi. Corresponding to 
these are the failure strengths for maximum strain failure established from equa- 
tion (5.4). For some fiber orientations the normal strain may be compressive, so 
both tensile and compressive properties are required. 

Figure E5.1-I. Assumed stress in pressure vessel reinforremenls. 

The analysis for failure due to the maximum stress theory is simple since only 
the principal direction stresses are required. Using the stress transformations from 
Chapter 2, the failure criteria for the maximum stress theory are 

The solution of each possible failure depends on fiber orientation, so no unique 
solution exists. The spacing depends on which failure criterion is met fint at a 
particular fiber orientation. Recalling that m = cos0 and n = sin@. we denote the 
fiber spacing according to which stress component satisfies the failure condition by 

U, controlled: s = 25,9701 cos2 B 
0 2  controlled: s = 0.931/sin2 B 
r12 controlled: s = 0.9031 sin B cos B 
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Figure E5.1-2 shows the fiber spacing as a function of fiber orientation for each 
failure mode. The spacing which could be used is obtained by taking the minimum 
spacing for each angle considered, as shown in Figure E5.1-3. At 0" the spacing 
associated with a, is required, since all other solutions predict that s = m. Up to 
45" the r12 controlled failure predicts the appropriate spacing, and from 45" to 90" 
the u2 controlled spacing is appropriate. 

+ o, controlled 

--A- - a2 controlled 

U - v,, controlled 

0 10 20 30 40 50 60 70 80 90 

Fiber Orientation (degrees) 

Figure E5.1-2. Reinforcement spacing for each component ofthe maximum stress failure 
Iheory. 

Fiber Orientalion (degrees) 

Figure E5.1-3. Reinforcement spacing from muximum stress theory 

The strains in the principal material directions are related to the stresses through 
the relationships in Chapter 2. Recall that 

where [S ]  is a function of fiber orientation. The principal material direction stresses 
are related to the applied stresses through the stress transformation relations. 
Coupling this with the preceding relationship, the maximum strain failure theory 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



is written as 

For some fiber orientations Y ,  must be replaced with Y: since the strain in the 2- 
direction is compressive. Reinforcement spacing as a function of fiber orientation 
is shown in Figure ES.1-4. This curve is similar to that presented for the maximum 
stress theory. A direct correlation of the maximum stress and strain theories indi- 
cates that they predict virtually identical results, as shown in Figure E5.1-5. 

+ c, mntrdled 
-A- EZ controlled 
U y,,controlled 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 3  

Fiber Orientation (degrees) 

Fig- E5.1-4. Reinforcement spacing for each component of fhc maximum strain failure 
theoly. 

-0- Strain Failure 
-b Stress Failure 

0  10 20 30 U)  50 60 70 80 90 

Fiber Orientation (degrees) 

Figure E5.1-5. Reinforcement spacingfrom murimurn stress and strain theories. 

This close correlation is not always observed when comparing the two theories. 
The state of suess in the component plays a more significant role in defining the 
state of strain than may be evident from this example. 
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l0 ksi 

Figure E5.Z. M u k i a l  stale of stress. 

Example 5.2. Assume the lamina shown in Figure E5.2 is subjected to the multi- 
axial state of stress indicated. 

The stresses in the principal material directions are 

0.25 0.75 17.41 
- [ 0.75 0.25 - 1  {/H} = {-li:iU5 } ksi 

-0.433 0.433 -0.5 

The material properties and failure strengths are assumed to be 

El = 8.42 X lO"si E2 = 2.00 X 1O6 psi G12 = 0.77 X 106 psi "12 = 0.293 
X = 136ksi X' = 280 ksi Y =4ksi  Y' = 20 ksi 

S =6ksi  

When the preceding stresses are compared to these failure strengths, i t  is evident 
that no failure has occurred according to the maximum stress theory. For complete- 
ness, however, the failure strains should also be checked. The sb-esses just given 
can be used to determine the principal direction strains by using the compliance 
matrix so that 
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The failure strains associated with this material are 

A comparison of the failure strains with those resulting from the applied state of 
stress shows that failure does not occur. In each case the shear term (either strain 
or stress) was the closest to failure. This result brings to light some interesting 
aspects of shear failures, and the general impomnce of shear stresses. 

5.4 The Significance of Shear Stress 

Unlike tension or compression, shear failures are not distinguishable as being either 
tensile or compressive since the shear failure strength is independent of the sign 
of r .  Consider the lamina shown in Figure 5.3a, with fibers oriented at 0 = -45". 
and a positive shear stress r applied. The stresses in the 1-2 material plane are 
as shown in Figure 5.3b and are 

Figure 5.3. Pure shear with rand B = -45". 

The signs of these stresses indicate that failure is likely to be matrix dominated 
and occur in the 2-direction since its failure strength is much lower than that in 
the l-direction. If the material is the same as that used in Example 5.2, the shear 
stress that would cause failure is r > 4 ksi. 

If the direction of the applied shear stress is reversed so that r = -r (as shown in 
Figure 5.4a), and the angle 0 = -45" is maintained, the principal material direction 
stresses illustrated in Figure 5.4b and are 
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Figure 5.4. Pure shear wilh -rand B = -45". 

For this case there is a tensile stress in the l-direction and a compressive stress in 
the 2-direction. Refemng to the failure stresses of Example 5.2, this indicates that 
failure occurs for r = 20 ksi. 

Shear stress can play a significant role in lamina failure, since it contributes to 
both the magnitude and sign of stresses in various directions. Although the sign 
of the applied shear stress does not affect the shear failure strength (S), there is 
interaction between stress components and the associated failure of a composite 
lamina. 

Example 5.3. Assume a state of pure shear stress on an element of unidirectional 
lamina for which the fiber orientation is arbitrary (either +B or -B )  as illustrated 
in Figure E5.3-1. The applied stress is assumed to be either positive as shown, or 
negative. We wish to determine the stress required to cause failure as a function 
of B. 

Figure E5.3-I. Plue shear on an ekment wifh arbitmry @er orie&n. 

Assume this lamina is made of the material in Example 5.2. The stresses in the 
principal material directions are established from equation (2.3) to be 

Analysis of +O fiber orientations: A +O fiber orientation results in a tensile U,  

and compressive q. Using the maximum stress theory with the failure strengths 
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of the previous example, three possible failure conditions result: 

Analysis of -B fiber orientations: A -B f i k r  orientation results in a compressive 
U, and tensile oz. The three resulting failure conditions are 

Substituting various values of B into these equations results in failures that are 
predominantly controlled by the shear stress failure condition S / ( m Z  - nZ). For 
some fiber orientations, however, failure is controlled by the appropriate 02 failure 
condition of either Y / 2  mn or Y f / 2  mn. This is illustrated in Figure E5.3-2 by a 
plot of the shear stress required to produce failure as a function of B.  The applied 
shear stress required to produce failure is dependent on both the direction of the 
applied shear and f i k r  orientation B.  A similar set of results can be obtained using 
the maximum strain failure theory. 

Fiber Orientation (degrees) 

Figure E5.3-2. Applied shear slress vs B required ro produce failure of a lamina with 
arbitray JFber orientations. 

5.5 Interactive Failure Theories 

The interaction of stress components was partially illustrated in Example 5.3. 
Initial efforts to formulate an interactive failure criterion are credited to Hill [l01 
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in 1950. Since then others have proposed modifications to the initial theory. Some 
interactive failure theories are complicated, and in certain cases the amount of 
work needed to define critical parameters for a specific theory exceeds the benefit 
of using it. The general form of a majority of these theories can be put into one 
of two categories, each of which has a different form. These criteria and their 
associated failure theories are expressed in tensor notation below. 

Criterion Theory 

F i j q a j  = 1 Ashkenazi [ l  l], Chamis [12], Fischer [13], Tsai-Hill 
[14], Nonis [l51 

Fi ja ia j  + Fiai = 1 Cowin [16], Hoffman [17], Malmeister [18], Marin [19], 
Tsai-Wu [20], Gol'denblat-Kopnov [2 l ]  

Each theory is summarized Tables 5.1 and 5.2. The fundamental difference in 
each is the extent to which the terms Fi  and F i j  are defined. The interactive term 
F I 2  can be influential in predicting failure and is often difficult to experimentally 
define. 

Table 5.1. Summary of interactive failure theories governed by Fijuiaj = 
l ( F i i 4  + F224 + Faarf.2 + 2F12a1az = 1) (after P I ) .  

Ashkenazi 
[l11 

Chamis 
1121 

Fisher 
[l31 

Tsai-Hill 
1141 

Noms' 
1151 

'An additional condition in the Nonis theory is that at = x2 and U; = y2 

K', = experimentally determined correlation coefficient. 
U = longitudinal strength of a 45" off-axis coupon. 

The interactive theories presented here are not the only ones available for compos- 
ites. Energy formulations as well as complete laminate theories (as opposed to 
isolating individual lamina) have been proposed. For example, Petit and Waddoups 
[22] extended the conventional maximum strain theory to include nonlinear terms. 
Sandhu [23] formulated a parallel failure theory based on energy methods. Puppo 
and Evensen [24] postulated a failure theory directly applicable to the entire lami- 
nate. Similarly, Wu and Scheriblein [25] formulated a tensor polynomial for direct 
laminate failure evaluation. A more detailed discussion of many of these theories 
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T& 5.2. Sumnuqv of interactive failure thoeories governed by Flui + FU*uj = l ( F l 1 4  + F t r d  + + 2 F n ~ l ~ 2  + Flul + Flu2 = 1) )- 
(after I21). 9 

b' 
Theory F1 F2 F11 F22 F12 F66 4 

1 1  - - - 1 1  - - -  I 1 2 s 2  Jm - 1 1  
Cowin - - 

[l61 X  X' Y  Y' XX' YY '  2S2 S2 
1 1  - - - 1 1  

- - - 1  1  1  -- l  
Hoffman 

[ l71 X  X' Y  Y' X X f  Y  Y' 2XX' S2 

Malmeister 
[ l81 

h .  

Tsai - Wu 
K201 

1 1  
Y  XX' 

XX' 

1  - 
XX' 

1  - 
XX' 

l  S&, [ (F1 - F 2 )  + (S i s ) (F1 l  + F z z ) ]  - 1  1  - 
YY '  2 (S i5  )2 S2 

1  

YY '  

YY'  

1  X X f - S I X 1 - X - X ' ( X / Y ) + Y ]  -- 
XX' 2S2XX1 

< *,/m and is determined - 
under biaxial stress 

2 1  
Gol'denblat Kopnov - [21]* ( )  X X f (+-h) ( L )  4 X  X  a ( ; -  - ! [ ( ;+L) '+(++;)2- (&+&)]  S 

*S45 and S& are the shear strength of the 45" coupon subjected to positive and negative shear. 
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is presented in Rowlands [2].  The Tsai-Hill and Tsai-Wu interactive failure theo- 
ries considered to be representative of those from each category and are discussed 
herein. 

5.5.1 Tsai-Hill (Maximum Work) Theory 

The Tsai-Hill theory [l41 is considered an extension of the Von Mises failure 
criterion. The failure strengths in the principal material directions are assumed to 
be known. The tensor form of this criterion is Fi ju ia j  = 1. If this expression is 
expanded and the Fi j  terms replaced by letters, the failure criterion is 

Expanding and collecting terms, 

( G  + H)O: + ( F  + + ( F  + G)U; - 2[H0102 + F ~ 2 u 3  + G 0 1 ~ 3 ]  

+ 2[Lt;, + MT:, + ~ t : ~ ]  = 1 

where F ,  G, H, L, M, and N are anisotropic material strength parameters. 

The failure strength in the principal material directions are represented by X, 
Y, and Z. Application of a uniaxial tensile stress in each of the three principal 
material directions while keeping all other stresses zero (i.e., a, # 0, 02 = 03 = 
t12 = t 1 3  = t 2 3  = 0) yields 

These expressions can be solved for the unknowns G, H, and F: 

Assuming a state of plane stress (a3 = t 1 3  = t23  = 0 )  the failure theory is 
written as 

(G+ H)O? + ( F  + ~ ) a ;  -2Hala2  +2N& = 1 

GO: + ~ a ;  + FD; + HG; - 2Hala2  + 2 N t f 2  = 1 

Application of a pure shear stress t l 2 ,  with ol = a2 = 0, results in an expression 
for the only remaining parameter, N: 

Substitution of the failure parameters F, G ,  H ,  and N into the plane stress failure 
criterion yields 
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Figure 5.5. Schematic of 2- and 3-directions in a lamina. 

The primary load-resisting constituent in the 2 and 3 directions is the matrix, as 
illustrated in Figure 5.5. 

Therefore, Y = Z and the above expression simplifies to the plane stress form of 
the Tsai-Hill failure theory 

Sometimes it is convenient to express the stress and strength in terms of stress and 
strength ratios. The stress and strength ratios for plane stress can be written as 

Stress ratios: p = a,/a, q = sx,/ax 

Strength ratios: r = X/Y S = XIS 

Using stress ratios the Tsai-Hill failure theory is written as 

It is generally assumed that the strength and stress ratio remains constant as the 
lamina loads increase. Consider the simple case of an off-axis lamina subjected 
to an axial stress a, (refer to Figure 5.2). The parameters p and q are both zero, 
since only an axial stress a, is applied. Therefore, with p = q = 0, the stresses in 
the principal material directions are 

Substituting these into equation (5.5) and using the strength ratios results in 

Solving for the applied stress a, yields 

For the special case of 0 = 0" this reduces to a, = X. In a similar manner, if 
0 = 90" this expression becomes a, = Y. 
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Example 5.4. The maximum stress and Tsai-Hill theories are investigated for 
pure shear. The lamina under consideration is assumed to have an arbitrary fiber 
orientation of either -8 or +8, as shown in Figure E5.4-1. The material is 
glasslepoxy with E l  = 7.8 X 106 psi, E2 = 2.6 X 106 psi, G12 = 1.25 X 106 psi, 
v12 = 0.25, and failure strengths X = X' = 150 ksi, Y = 4 ksi, y' = 20 ksi, and 
S = 8 ksi. The stresses in the 1-2 plane based on an applied shear stress of 
-t are 

-2mn 

Figure E5.4-l. Pure shear with an arbitrary jiber orientation. 

The tensile and compressive components of stress change with 8. For a positive 
angle, a1 is compressive and a 2  tensile. For a negative angle, a1 is tensile and 0 2  

compressive. The shear stress t12  will not change sign as 8 changes from positive 
to negative, but it will change sign based on the angle itself. Since X = X', the 
sign of a1 is not significant, but the sign of a 2  will dictate which failure strength 
(Y or Y') is used for the 2-direction. 

Maximum Stress Criterion. In the maximum stress criterion, four failure condi- 
tions must be checked. For materials in which X # X', a fifth condition is required. 
Each condition is a function of 8: 

a1 = 150,000 = -2mnt t = 75,000/mn (for all 8) 
a 2  = 4000 = 2mnt t = 2000/rnn (for +8) 
0 2  = 20,000 = 2mn t t = 10,00O/mn (for -8) 
t12 = 8000 - (n2 - m2) t = 8000/(n2 - m2) (for all 8) 

Tsai-Hill Criterion. The Tsai-Hill criterion requires only one equation to establish 
failure. Substituting the stresses and failure strengths for this case into equa- 
tion (5.5) yields the failure criteria. The governing equation depends on the sign 
of 02, since it is the only stress component having two failure strengths (for this 
material). 

+g: at is compressive and a 2  is tensile, and the failure equation is 
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-8: a1 is tensile and a2 is compressive, and the failure equation is 

Solutions for the maximum stress criteria result in sign changes for t similar to 
those in Example 5.2. Solutions for the Tsai-Hill criteria yield two roots for r 
for each angle. To compare these theories, absolute value It( vs 8 is plotted in 
Figure E5.4-2. The Tsai-Hill theory produces a more uniform curve of It1 vs 8 
than the maximum stress theory. For negative fiber angles the stress required 
to produce failure is greater than for positive angles. Depending on the fiber 
orientation angle, the maximum stress criterion will be controlled by either a2 
or t. The regions in which either shear or normal stress control failure for the 
maximum stress criterion are established by examination of the failure criteria 
at each angle. For example, 8 = 10", for which cos 10" = 0.9848 and sin 10" = 
0.1736. Comparing the a2 and the shear it is easy to see that 

0 2  = 
2000 

= 11,100psi t =  
8000 

(0.9848)(0.1736) 
= 8500 psi 

(0.030 - 0.9698) 

Therefore, the failure is shear controlled at this angle. 

From Table 5.1, the primary difference between failure theories is the form of 
the interactive term, F12 .  The Ashkenazi [ l  l ]  and Charnis [l21 theories require 
experimentally determined parameters not generally defined when X, X', Y, Y', 
and S are established. In the case of uniaxial tension applied to a lamina with a 
fiber orientation of 45", it is easily shown that very little difference in predicted 
failure load exists between the theories. This is due primarily to the magnitude 
of F 1 2  as compared to the other terms. For fiber orientations other than 45" the 
same conclusion may not be valid. The influence of an interactive term on lamina 
failure is better observed in the Tsai-Wu theory developed in the next section. 
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P) 
U a 20 - - 
.- -0 - Max Stress Theory 

Fiber Orientation (degrees) 

Figure E5.4-2. Comparison maximum stress and Tsai- Hill failure criteria for pure shear. 

The Tsai-Hill theory can also be formulated based on strains, by incorporating 
the appropriate relationships between principal direction strains and stresses and 
the failure strains (X, = X / E I ,  etc.), and substituting into equation (5.5). 

5.5.2 Tsai- Wu Tensor Theory 

The Tsai-Wu theory [20] has a form similar to that of several other interactive 
theories presented in Table 5.2. The most compact form for expressing this theory 
is through tensor notation: 

where Fi and F i j  are strength tensors established through experimental procedures 
and are related to failure strengths in principal lamina directions. For an orthotropic 
lamina subjected to plane stress (a3 = t l 3  = t23 = 0) this reduces to 

The 0 6  term is the shear stress t l 2 ,  as shown in Figure 5.6. 

Figure 5.6. Plane stress components for failure analysis using the Tsai- Wu tensor theory. 
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It is possible to define five of the six parameters from simple test procedures. 
For example, consider a load in the 0 1 - ~ 1  stress-strain plane as illustrated in 
Figure 5.7. 

Figure 5.7. Uninriul tension and compression tests to determine F1, Fl l ,  F2, and Fzz. 

Assuming all other stress components are zero, the failure criterion reduces to 

F 1x2 + F  1X = 1 (for tension) 

F 1 1 ~ ' 2  - F  1X' = 1 (for compression) 

Solving these equations simultaneously results in 

1 1 1  
F l l = -  F 1 = - - 7  

XX' X  X 

Following a similar procedure for the 0 2 - e ~  stress-strain space as shown in 
Figure 5.7 yields similar results for FZ2 and Fz:  

F ~ ~ Y ~  + F2Y = 1 (for tension) 

F Z Z Y ' ~  - F2Y1 = l (for compression) 

Solving these two equations yields 

Similarly, application of a pure shear stress results in 

F ~ ~ s ~  + F6S = 1 (for -k t )  

F ~ ~ s ' ~  - FsS' = 1 (for - t )  

Solving these equations yields expressions identical in form to those for F 1 l ,  FZZ,  
F  1 ,  and F2. Since S  = S', these terms are 
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In a similar manner, evaluation of the remaining first-order terms (F16ala6 and 
F26a2a6) yields F I 6  = F2f, = 0. Because of this, the Tsai-Wu failure reduces to 

The only remaining term to be determined is F I 2 .  WU [26] argued that this can be 
accomplished by applying a biaxial state of stress so that a1 = a2 = a. In this 
case the failure criterion becomes F 1 ]a2 + 2 ~ 1 2 0 ~  + ~~~a~ + F l u  + F 2 a  = 1. 
Collecting terms and rearranging, ( F l 1  + 2 F I 2  + ~ 2 2 ) ~ ~  + ( F I  + F 2 ) a  = 1. This 
expression can now be solved for F12, with 

Thus, F l z  depends upon the various engineering strengths and the biaxial tensile 
failure stress a. A biaxial tension test can be difficult to perform and cannot 
generally be used to define F I 2 .  Originally, Tsai and Wu [20] suggested that a 
45" off-axis tension or shear test would be good for determining F12. It was later 
reported [27] that slight variations in the fiber orientation would completely obscure 
the estimates of F I 2 .  The off-axis test has been shown to produce poor results for 
predicting F I 2  [28, 291. A theoretical test procedure by Evans and Zhang [30] 
has been proposed for determining F12.  They suggest a series of tests in which 
deformations in the directions transverse to the applied load are zero, as shown 
schematically in Figure 5.8. 

Figure 5.8. Schematic of test procedure proposed by Evans and Zhang [30] for detenni- 
nation of Flz. 

The exact value of F12 cannot be explicitly determined, but there are bounds 
imposed on it by geometric considerations [31]. F I 2  can force the general form 
of the failure criterion to change from an ellipse to a parallel set of lines to a 
hyperbola, depending on its value. The interactive term is generally established 
from experiments in which r = 0. With r = 0 the failure criterion can be put into 
the form (F l la l  + F12a2 + F1)al + (F2202 + F1201 + F2)a2 - 1 = 0. A general 
second-degree expression of this type can define a quadratic surface. The type 
of surface defined depends on the sign of the determinant formed by the stress 
coefficients, called the discriminant [32]. The types of surface formed, as well as 
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the discriminants, are 

> 0 ellipse 
Discriminant = F l l  - = 0 parallel lines 

< 0 hyperbola 

The appropriate form of a solution for defining a failure envelope is a closed 
surface, such as an ellipse. To determine F12 a normalized interactive term is 
introduced: 

The admissible range of values for F;, and its associated curve are 

-1 < F;, < 1 (ellipse) 

F;2 = 1 (parallel lines) 

F;2 < - 1 ,  1 < FT2 (hyperbola) 

Using F12 = FT2 ,/m, the failure criterion can be written as 

This equation describes a family of ellipses. FT2 governs the slenderness ratio and 
the inclination of the major axis, which is +45" for -FT2 and -45" for +FT2. 
Assuming the orthotropic failure criterion described earlier is a generalization of 
the Von Mises failure criterion, the interactive term is best defined as FT2 = - 112. 

The parameters selected to define F 1 2  do not have to be those defined by Tsai and 
Hahn [31]. Wu and Stachorski [33] found that for materials such as thermoplas- 
tics and paper (which are less anisotropic than graphitelepoxy) good agreement 
between theory and experiment is achieved for an interactive term expressed as 

This term is not the only one applicable to slightly anisotropic materials such 
as paper. A correlation of various strength theories with experimental results 
for paperboard is presented in Schuling et al. [34]. Some theories showed good 
correlations and some did not. In general, the form presented by Tsai and Hahn 
[31] appears to be better suited to more highly anisotropic materials such as 
graphitelepoxy than other representations. 

Example 5.5. Consider a unidirectional lamina with failure strengths X  = X t  = 
217.7 ksi, Y = 5.8 ksi, Y t  = 35.7 ksi, and S = 9.86 ksi. 
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Assuming F;, = - 112, F12 = F y 2 1 / m  = - 1 S94 X 10-1°, the failure crite- 
rion becomes 

The solution to this equation depends on the state of stress in the 1-2 plane. 
Figure E5.5-1 shows the resulting failure surface for cases in which t = 0 and 
t = 1000 psi. By varying one component of normal stress and solving the resulting 
equation for the other, the complete curve is generated. For the case in which t = 0, 
the ellipse crosses the axes at the four intercept points corresponding to X, X', Y, 
and Y'. This is not the case when t # 0. As the shear stress increases, the failure 
ellipse shrinks. The effect of F12 on predicting failure can be seen by altering FT2, 
as shown in Figure E5.5-2. The variety of possible failure surfaces shown here 
illustrates the importance of correct selection of F;, for a particular material. 

Figure E5.5-I. Failure ellipse for biarial stress with T = 0 and T # 0. 

Example 5.6. As a variation to establishing failure ellipses, consider the unidirec- 
tional lamina in Figure E5.6. The failure strengths are the same as those previously 
given, and the stresses are 

Substituting these stresses into the Tsai-Wu failure criterion gives m 4 ~ 1  1 ~ :  + 
2m2n2F12a; + n4F22a; + m2n2~66a;  + n 2 ~ 2 o ,  = 1. Collecting terms: 
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Figure E5.5-2. Effect of F L  on fm'lure ellipses. 

Figure E5.6. Unidirecrio~l lamina subjected to ex 

For 6' = 45". a' is found by solving the preceding equation: 

Solving this quadratic results in 

U, = 9.73 ksi. -28.8 ksi 

It is instructive to compare these results with the failure stress predicted from the 
Tsai-Hill theory. For 9 = 45". equation (5.5) becomes 

Substituting the appropriate failure strengths and solving results in a predicted 
failure stress of U, = 9.99 ksi. This is within 7% of the a, predicated from the 
Tsai-Wu theory. 

The Tsai-Wu theory predicts two roots, one for a tensile stress and one for a 
compressive stress. For compression the predicted failure stress (using X' and Y' 
instead of X and Y) is a, = - 19 ksi. 
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The Tsai-Wu failure theory can also be expressed in terms of strain. The proce- 
dure for transformation into the strain space is identical to that described for the 
Tsai-Hill theory in the previous section. 

5.5.2.1 Strength Ratios 

In the design and analysis of components using composite materials, the failure 
theory only answers the question of failure for a given state of stress. From a 
design viewpoint it is equally important to identify the additional suess to which 
a component may be subjected prior to failure. The general form of the Tsai-Wu 
failure theory is 

It defines a go-no-go condition on failure for a specific state of stress. The left- 
hand side can be either 

c 1 (no failure) 
= 1 (criterion is met) 
> 1 (not physically possible) 

Tsai and Hahn 1311 extended the use of a failure theory by defining an additional 
variable, the strength ratio R, such that ui. = Ru;. The subscript a means allowable 
or ultimate stress. The strength ratio R has features that make it a convenient 
parameter to incorporate into a failure theory: ( l )  if the applied stress or strain is 
zero, R = CO; (2) the stresdstrain level is safe if R > 1; (3) the stresdstrain level 
is unsafe if R = I; and (4) there is no physical significance if R < I .  An analogous 
development can be made for strain [31]. 

The strength ratio can be used to define the allowable stress or strain (R = l), and 
a factor of safety. If, for example, R = 2, the applied stress may be double before 
failure. 

For a specimen in uniaxial tension, the generalized criterion for failure involving 
strength ratios can be expressed as 

The solution of this equation involves two roots, R and R', applicable to either the 
tensile (R) or the compressive (R') failure strength. 

Example 5.7. Consider the specimen in Example 5.6. The only nonzero applied 
stress is assumed to be U, = 5 ksi. Failure strengths and strength coefficients (F , , ,  
etc.) with F; = -112 are 

X =X '=218  ksi Y = 5.8 ksi Y' = 35.7 ksi S = 9.86 ksi 
F11 = 2.104 X 10-l' F 2 2  = 4.833 X 10-9 F12 = -1.598 X 10-l' 
F66 = 1.0285 X FI = 0 Fz = 1.440 x I O - ~  
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The stresses in the principal material directions are defined by stress transforma- 
tion as 

Incorporating strength ratios into the conventional form of the Tsai-Wu failure 
criterion results in 

The solution of this equation depends upon the angle 8. For example, consider the 
two possible angles of B = 0" and 90": 

8 = 0": R = 43.6, and rh(8 = 0) = 5R = 5(43.6) = 218 ksi 

B = 90": R = 1.16, -7.121. which implies: 

For tension: oa = 5(1.16) = 5.8 ksi 

For compression: o, = 5(-7.12) = -35.7 ksi 

These results are comparable to those described in Example 5.5. They indicate the 
points on the 1-2 stress plane where the failure ellipse crosses an axis, which are 
the failure strengths for this material in the 1 or 2 directions. Assume the fiben 
are oriented at B = 45" (as in Example 5.6). For this case R = 1.874. -5.76, and 
the allowahles are 

For tension: ox = 5(1.874) = 9.37 ksi 

For compression: a, = 5(-5.76) = -28.8 ksi 

These results are the same as those given in Example 5.6, and they illustrate the 
use of strength ratios. 

5.6 Buckling 

Most of the efforts associated with buckling of composites have centered around 
plates and shells. A review of the buckling of laminated composite plates and shells 
is given by Leissa 1351. Buckling failures associated with lamina have not been 
investigated to the same extent as those associated with laminates. A survey of fiber 
microbuckling is presented by Shuan [36]. The problem encountered in buckling 
is that it generally results from a geomeuic instability rather than a material failure 
due to overstressing. A failure theory based on stress (or strain) is not applicable 
for buckling analysis. Initial investigations of the fiber microbuckling problem 
were formulated by Rosen [37] and are based on the procedures established by 
Timoshenko [38] for columns on an elastic foundation. The procedures described 
in Rosen (371 are also presented in Jones [39] and form the basis for one of the 
discussions presented herein. The phenomenon of fiber buckling can be defined 
as fiber insrabiliiy followed by a decreased capabilify of the fibers to carry load. 
with thefinal result being marrix failure by overstressing. The model from which 
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an analysis procedure can be developed is shown in Figure 5.9. It is assumed that 
the fibers are equally spaced and each is subjected to the same compressive load 
P. It is further assumed that the fiben can be modeled as plates of thickness h 
and an out-of-plane width of unity. The fihers are separated by matrix plates of 
thickness 2c. There are two distinct modes of buckling in lamina analysis, and 
the same model is used for each. The out-of-plane dimensions are disregarded, 
making the model two-dimensional. In each mode, failure results from instability, 
which in turn causes the matrix to fail. The manner in which the matrix deforms 
motivates the failure modes termed extension and shear modes. 

Figure 5.9. Fiber-buckling modeL 

Extension Mode. In the extension mode, all fibers are assumed to buckle with 
the same wavelength, but adjacent fiben are out of phase. The most prominent 
deformation is extension of the matrix seen in Figure 5.10. An energy approach 
is used to develop a solution for this mode of failure. The work and energy terms 
required are 

AU, = change in swain energy of the f ibe~ 

AU, = change in strain energy of the matrix 

AW, = change in work due to external loads 

These energies are related by AW, = AUf + AU, 

It is assumed that in its buckled state, the displacement of the fiher from its original 

The change in strain energy of the fiber is obtained by energy methods. Since the 
fiher is assumed to be a flat plate, the strain energy is written in terms of an elastic 
modulus and an area moment of inertia as 
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original fiber 
centerline 

deformed fiber 
centerline 

Figure 5.20. Model of defonnedj5ber centerlines used to define the extension mode of 
@er buckling. 

where M = ~ ~ l ~ ( d ~ ~ ~ / d ~ ~ ) .  Substituting this expression for M and noting 

d2 vf n2n2 n m  
- = 1 -a,, - 

L2 
sin - 

dx2 L 

results in 
L d 2 v f  

2 

* l J r = " " ' ~  2 (=) 
The extensional strain and stress in the matrix (in the y-direction) are E; = V f / c  
and U; = E,Vf/c.  In the X-direction the changes in strain energy are assumed 
negligible for the matrix. The total change in strain energy for the matrix is 

The external work is found by considering the total compressed state of the fiber. 
In the compressed state, it is assumed that the actual fiber length does not change. 
The end of the fiber travels a distance S as shown in Figure 5.1 1. The work is 
W, = P6. 

The displacement S is found by considering the length of the fiber, established from 

Expanding the radical in a binomial series results in 

Solving for S yields 
L-6 

S = l (y')2dx 
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Figure 5.11. Displacement ofJiber centerline in applied load direction. 

1 L 
Since L >> 6 ,  L - 6 + L, and 6 = - so (,(y')2dx, where y' = dVl/dx. The work 

2 
due to external forces is 

Combining these energy expressions produces the general form of the buckling 
equation. The value of P can be established from that expression as 

The fibers are mcdeled as flat plates of unit width. The inertia term 1, can be 
replaced by if = h3/12. If it is now assumed that P reaches the minimum critical 
value required for a particular since wave, the mth wave, the preceding equation can 
be put into a different form. The expression for the critical load can be expressed as 

The critical buckling load is a function of material properties. length, and m. 
The minimum wave number for buckling is determined from aPc~/am = 0, 
subject to the condition aZPc~/am" 0. These operations result in mZ = 
J24~~E, /n~ch 'Ef .  For certain material combinations and geomeuies this 
expression can yield unrealistically large values of m for the extension failure 
mode. Using the preceding expression for m', the critical buckling load is 

Equation (5.9) can be modified to reflect changes in volume fractions. The volume 
fraction of fibers can be modeled as vf = h/(h + 2c). This can be rearranged so 
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that c = h(l - ur)/2vf. Using this expression for C, equation (5.9) becomes 

Associated with the critical buckling load is a critical stress for the lamina, which 
is presented after the second mode of buckling is considered. 

Shear Mode. In this mode the fibers are assumed to buckle with the same wave- 
length and are considered to be in phase with each other. The matrix deformation is 
predominantly shear as illustrated in Figure 5.12. The buckling load is determined 
from energy methods. It is assumed that the matrix displacement in the y-direction 
is independent of y. The shear strain in the matrix is expressed as 

undeformed plate deformsd shape of tibers 

Figure 5.12. Model used to define shear mode ofjiber buckling. 

Since the transverse displacement is independent of y, aV,/ax = aVr/ax. There- 
fore, au,/ay = U,(c) - U,(-c)/2c. where U,(c) and U,(-c) are defined in 
terms of dVf/dx by U,(c) = (h/2)(dVf/dx) and U,(-c) = -(h/2)(dVr/dx). 
This results in aU,/ax = (h/2c)(dVf/dx). Using these expressions, the shear 
strain and stress in the matrix ate y:, = ( l  + h/2c)(dVr/dx) and rrv = G,y:,. 
The change in strain energy in the matrix is due to matrix shear and is 

Using the expression for the transverse displacement of the fiber from the exten- 
sional case, the shear strain is 

The subsequent change in strain energy of the matrix is 
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The changes in strain energy for the fiber (AUr) and the work due to external loads 
(AW,) remain unchanged from the previous case. Following the same procedures 
as before, the critical buckling load is 

The term L/m is called the buckle wavelength. The second term in this expression 
is small when the buckle wavelength is large compared to the fiber width h. For 
this reason. the second term is generally neglected and the critical buckling load 
reduces to 

hGm P ~ R  = - (5.12) 
urvm 

The critical stresses for the extensional and shear modes of buckling can be approx- 
imated from the critical buckling loads. Defining the stress a$ load divided by area, 
and recognizing that the area in question is that of the fiber, which is approximated 
as h, the critical stress is = PCR/h. For the extension and shear modes. the 
critical buckling stress is 

Extension: OCR = 2 
urErEm 

3(1 - ur) 

G m  Shear: ocR = - 
",-Um 

In order to assess which of these two modes is actually the most critical, both cases 
are examined for typical values of elastic moduli. The fiber modulus is generally 
greater than that of the matrix. Therefore, it is assumed that E, = 20E,. Since 
U, = 1 - uf, the critical stress for extension is 

For the shear mode, the shear modulus of the matrix (assuming isotropic constituent 
material behavior) can be expressed as 

Assuming U, = 0.35, the critical buckling stress for shear becomes 

From these expressions it appears as if the shear mode is the most probable mode of 
buckling. For a glasslepoxy lamina with Er = 10.6 X 106 psi. E, = 0.5 X 106 psi, 
and G, = 0.185 X 106 psi, the critical buckling stresses for the extension and shear 
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modes are 

Extension: o c ~  = 2.645 X 106 E 
Shear: o c ~  = 

0.185 X 106 

vyum 

Plotting these two stresses as a function of vf yields the results shown in 
Figure 5.13. 

Figure 5.13. Critical buckling stress for extension and shear modes. 

The shear mode is seen to be the most critical for a large range of fiber volume 
fractions. At very low (and generally unrealistic) fiber volume fractions, the exten- 
sion mode dominates. Although this illustration does not include experimental 
results, the dominance of the shear mode as a failure mechanism has been exper- 
imentally investigated and verified by Greszczuk 1401. From experimental and 
theoretical studies of graphite fibers in various matrices he formulated the following 
conclusions: (1) microbuckling in the shear mode dominates for low-modulus resin 
systems: (2) transverse tension failures (including fiber "splitting") result with 
intermediate-modulus resins; and (3) the reinforcements fail in compression with 
high-modulus resins. 

An expanded form of the critical stress for the shear failure mode is obtained by 
dividing the critical load in equation (5.11) by the fiber area h. Comparing this 
form of to that predicted by the Euler buckling formula [40] results in the 
following relationship between o~.r, and o,i,,,b.,ui.,: 

where W, L, and h are the specimen width, length, and fiber diameter, respec- 
tively, and 
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A more comprehensive discussion of the relationship between Euler buckling and 
microbuckling is presented by Greszczuk [41]. In many cases UEUI,, > U,,-U,.,. 

The model presented herein assumes the fibers to be initially straight. Predictions 
resulting from this model tend to be larger than experimental measurements, which 
prompted Davis [42] to develop a model incorporating fiber geometry allowing 
for initial fiber curvature. He investigated a boronlepoxy composite and evaluated 
both delamination and shear instability. The conclusion drawn from his study was 
that shear instability is critical. 

An alternative viewpoint 143-481 is that compression failures may be the result of 
fiber kinking, which can be linked to kink bands formed along existing glide planes 
in the load direction. A mode of failure associated with fiber buckling and kinking 
is shear crippling. Shear crippling appears as a shear failure on a plane at some 
angle to the loading direction if viewed macroscopically. A microscopic investi- 
gation reveals that shear crippling is frequently the result of kink-band formation 
as schematically illustrated in Figure 5.14. The analysis of kink-related failures 
generally requires a nonlinear material model and analysis techniques beyond the 
scope of this text. 

Figure 5.14. Schematic of kink-band geomehy (after Hahn and William 1491). 

Experimental findings 149, 501 strongly suggest the origin of failures for uniaxial 
specimens loaded in the fiber direction by compression is the free edge of the 
lamina. Based on these observations, Wass et al. 1511 developed a model for incor- 
porating the free edge as the origin of a buckling failure. The model used is shown 
in Figure 5.15. Analysis of this model consists of three parts, which require elas- 
ticity formulations beyond the scope of this text. The logical progression from a 
single fiber composite to an isolated single buckled fiber and its relationship to the 
mauix material during buckling are easily understood. The combination of several 
similar models (one of which is the free surface model in Figure 5.15) results in 
a complete solution. Result.. from Wass et al. 1511 are lower than those presented 
by Rosen (371, and at high fiber volume fractions the results violate some of the 
general beam theory assumptions used to establish the model. 

5.7 Design Examples Incorporating Failure Analysis 

As an example of design and failure analysis, consider the filament-wound, closed- 
end pressure vessel in Figure 5.16. The winding angle 0 is assumed to be positive 
and is allowed to vary in the range O" < 0 90". 
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tiber 

M matrix 

(a) (b) (c) 

Figure 5.15. Model of (a) singlefiber composite, (b) isolated buckledMer, and (c) matrix 
configuration at buckling (aBer Wass et d. 1511). 

Figure 5.16. Filrrment-wound pressure vesseL 

The required lamina thickness as a function of winding angle, r = f (B ) ,  is to 
be determined so that failure does not result. The pressure vessel is assumed to 
be subjected to an internal pressure P. From classical thin-walled pressure vessel 
theory, the longitudinal and circumferential stresses are the only ones present in 
the X - y  plane, and the state of stress for the vessel is shown in Figure 5.17, where 
U, = Pd/41, ay = Pd/21, and T,, = 0. 

Figure 5.17. Stresses on+nt-wound closed-end pressure vessel. 

Assume the material may be either borodepoxy or glass/epoxy. Both the Tsai-Hill 
and Tsai-Wu failure theories are used for analysis. The internal operating pressure 
is P = 100 psi. Introducing a constant a = Pd/2 = 1500 psi-in, the stresses in the 
1 -2 plane are 

The failure strengths for each material are: 

Material X (ksi) X' (ksi) Y (ksi) Y' (ksi) S (ksi) 

Borodepoxy 185 363 8.8 44.7 15.2 
Glasslepoxy 187 119 6.67 25.3 6.5 
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Tsai-Hill Criterion. 
2 2 2  2 2  2 

a, - 0 1 a 2  + a 2 r  + r12s = X  

Substituting the stress just given into this expression yields 

This reduces to 

m4(4r2 - 1) n4(r2 + 2) m2n2(4r2 + s2 - I) 
+ 4 

+ 
4 ] ( f ) 2  = x2 

Assuming only tensile stresses, and using borodepxy, the strength ratios are 

X X 
r = - = 21.02 s = - = 12.2 

Y S 

Therefore, the failure criterion is 

a 2 
1442m2 + 11 1n2 + 479m2n2] (-) = (185 X 10')' 

I 

Substituting a = Pd/2 and solving for 1 yields 

r = 8.1 X 10-'J442m4 + 11 In4 + 479m2n2 

For glasslepxy, assuming only tension, with strengtb ratios of r = 28.03 and 
s = 28.76, the failure theory becomes 

Substituting a = Pd/2 and solving for r results in 

r = 8.02 x 10-'J785m4 + 197n4 + 991m2n2 

Tsai-Wu Criterion. 

F I I ~ :  + 2F1za1oz + ~ 2 2 0 ;  + FWU; + FIOI + F 2 0 2  = l 

This criterion requires more coefficients. Substituting the preceding stresses into 
this equation yields 

F I I  ([g +n2]  :)'+ 2FI2  ([f +n2] f )  ([g + -21 :) 

+ F  ([f + n 2 ]  f )  +F2([: +rn2]  f )  = I  
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This can be rearranged to 

Collecting terms, the Tsai-Wu criterion is written as 

(F l l  + 4;~ + ,Fz2 ) + n4 ("U + 4112 + F 2 2  

+rn2n2 ( ~ F I I  + 10F12 +4F22 + FM 
4 

For boronlepoxy the strength coefficients with F;? = - 112 are Fl I = 1.489 X 

10-l'. Fz2 = 2.54 X 10-9, FM = 4.328 X 10-'. F 1 2  = -9.72 X 10-", F1 = 
2.65 X 10-6, and F 2  = 9.13 X 10-5. Using these, the failure equation becomes 

For glasslepoxy the coefficients are FII ~ 4 . 4 9 4  X 10-", Fz2 = 5.989 X 10-', 
FM = 2.367 X 10-8, F12 = -2.594 X IO-", F] = -3.06 X 10-~, and F2 = 
1.104 X and the failure equation becomes 

[m4(5.74 X I O - ~ )  + n4(1.275 X I O - ~ )  + m2n2(l.l3 X 1 0 - ~ j ) a ~  

+ {rn2(l.088 X 10-~)  + n2(5.214 X I O - ~ ) )  at = t 2 

The variation of wall thickness with 0 is shown in Figure 5.18. As seen. there is 
little difference between the predicted wall thickness for either theory. The main 
difference is in the material selection. 

As a second example, consider the support bracket shown in Figure 5.19. It is 
designed to safely sustain an applied load of 500 lb. directed as shown. The 
material is carbonlepoxy (T30015208) with properties defined in Table 4.2 (refer- 
ence 1421 in Chapter 4). The bracket i s  assumed to have an a rb i t rq  fiber orien- 
tation. The purpose of this analysis is to establish a design envelope for fiber 
orientations as a function of applied load. Although the design load is 500 lb, 
it is initially assumed that the applied force has an unknown magnitude F .  The 
design envelope is to be established using both the Tsai-Wu and maximum strain 
failure theories. Assume that from previously designed components of this type, 
it is known that section AA in Figure 5.19 is the critical section. 
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Fiber Orientation (degrees) 

Figure 5.18. Variation of wall thickness with B in ojilament-wound pressure vessel using 
llai-Hill and Zkai- Wu failure theories. 

Figure 5-29. Support bracket with arbifnrryfiber orientations. 

The initial step in the analysis is to define the state of stress at critical points 
in cross-section AA, and subsequently the principal direction stresses and strains 
for failure assessment. In order to establish the state of stress, we first define the 
loads and moments acting on section AA. Considering the free body diagram in 
Figure 5.20, we see that the applied force vector at the free end of the bracket will 
result in a force vector which must satisfy the condition of static equilibrium of 
forces, 

In a similar manner the moment at section AA must satisfy the condition of equi- 
librium of moments. given by 

Solving these expressions for the vector components of FR and MR results in the 
cross-section loads and moments expressed in terms of the applied force F as 
shown in Figure 5.20. 
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Free body diagram 

27.2F 

lntemal forces and moments 

Figure 5.20. FBD and internal loads and moments at section M. 

The transverse shear forces (in the X- and z-directions) are assumed to have 
negligible effects upon the state of stress in section AA. For convenience the 
two bending moments, being vector components, are combined to yield a single 
moment oriented with respect to the x-axis. This resultant moment will produce 
tensile and compressive stresses at two points (B and C) as shown in Figure 5.21. 
From geometry. the cross-sectional area, second area moment of inertia, and polar 
moment of inertia are A = 1 -374 in2, I = 0.537 in4. and J = 1.074 in4. 

The state of stress at points B and C is determined by combining the stress 
components resulting from the individual loads and moments, as established from 
elementary strength of materials considerations. 

Figure 5.21. R e s u ~  bending moment U! section M. 

Combining the normal stress components at points B and C and including the 
shear stress results in the state of stress at both points, as shown in Figure 5.22. 
The normal stress exists only in the y-direction. It is assumed that the x-axis has 
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Point B Point C 

Figure 5.22. SMe of stress at points B and C 

been redefined to coincide with the line connecting points B and C and is indicated 
as X'. 

The state of stress in the principal material directions at either point is established 
by stress transformation: 

m2 n2 2mn m2u, + 2mnr,, 
n2 m2 -2mn I { " } = {  n2uy-2mnrrY 

-mn mn m2 - nZ r,, mnu, + (m2 - n2)r,, I 
Incorporating these stresses into the Tsai-Wu theory, assuming FY2 = -112, and 
using the failure strengths in Table 4.2 results in 

An alternative form of this expression can be established by using explicit u l ,  u2, 
and 712 terms given earlier. The failure theory becomes 

Either form of the failure theory can be expressed in terms of the applied load 
F, since U, and r,, are functions of F. An explicit solution for F is established 
by solving one of the foregoing relationships for a specific fiber orientation. The 
results differ from point B to C, since one experiences a normal tensile stress, and 
the other a normal cornpressive sbess. The principal direction stresses as a function 
of F and the actual failure load satisfying the preceding criterion for points B and 
C are summarized in Table 5.3 for selected fiber orientations. 

The principal direction strains and stresses are related by 
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Table 5.3. Summarv off&re lwdr al wints B and C. - - -  
Point B Polo1 C 

0 -I a* ?I* F (Ib) 0 1  LT* z-2 F Ob) 

The stresses established from strength of materials approximations are related to 
loads and geomeuy, while strains are associated with deformations. Incorporating 
the material properties into the general expression just given results in the principal 
direction strains: 

0.038 -0.01 1 0 { I )  = [-0;II 0.689 
0 0.962 

when &l is replaced with X,, etc. this expression becomes 

Although X, and X: are identical, Y e  and Y: are not. Therefore, the preceding 
expression must be examined according to the sign of E Z .  The sign of each strain 
component is established from [ E ]  = [S][u). Each component of strain, expressed 
in terms of the applied load F, is presented in Table 5.4 for various fiber orientation 
angles. The units of each strain component are wintin. 

Table 5.4. Summary of s h i n s  al points B and C. 

Point B Point C 

The sign of ~2 varies with fiber orientation. Taking this into account, the maximum 
strain failure criterion for each sign of c2 is 
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For 'or? c 0 the negative sign is omitted, with the understanding that these compo- 
nents of strain are compressive. The load required to cause failure is established 
by correlating the information for individual strain components with the failure 
strain for that case. Take, for example. point B with a fiber orientation of 30". The 
relationship between the normal strain (noting thal &z < 0) and failure strain for 
each component results in failure loads determined from 

Solving each of these results in three possible failure loads. The lowest one is the 
obvious choice for this example. A summary of the failure load for each point. 
based on each condition, is given in Table 5.5. In this table the load at which 
failure initially results is underlined. 

Tobk 5.5. Summary loods required to produce failure according to the marinrum strain 
theory failure. 

61 62  nz . ~- 

B Point B Point C Point B Point C Point B Point C 

0 15,500 15.070 694 - I I0 777 777 

From this it is obvious that failure generally results from either a normal strain 
in the 2-direction or the shear strain. A direct comparison of results predicted by 
the maximum strain theory and the Tsai-Wu theory is presented in Figure 5.23. 
It is apparent that point C is the critical point within the cross-section. For fiher 
orientations less than approximately 60". both theories predict failure loads below 
the design load of 500 lb. The fiber orientations corresponding to a safe operating 
condition are those for which the curves lie above the 500-lh threshold. Since 
the maximum strain theory predicts failure loads less than 500 lb at point R for 
40" c Q c 80". the safest fiber orientation would he Q > 80". The assessment of 
which failure theory is most acceptable will influence the final design choice. 

In general, structural members made from unidirectional composite materials are 
initially analyzed in much the same manner as isotropic materials. The first step 
requires an explicit identification of the forces and moments which exist on a plane 
containing the points being assessed. Subsequently, the state of stress at each point 
must he identified. Failure analysis can then be conducted using any (or all) of the 
methods presented herein. or other suitable procedures. 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



1400 - I l I I I 
U Pomt B Tsat-Wu theory 
- A -  Point C Tsal-Wu thmry 

1200 - S Polnt B Max e theory 
m + Polnt C Max slhmry 
g 1000 - - o Deslgn load 

Fiber Or~entat!an (degrees) 

Figure 5.23. Failure envelope for support bracket eslnblhhed by nai -  Wu and maximum 
strain failure theories. 

Table 5.6. Strength coefiienls for Tmi-Hill theory. 

Material 1 /x2  I/(X')2 I /Y'  l / ( ~ ' ) ~  1/S2 
[Chapter 4 
referencel 

CarbonIEpaxy 

T300/5208 1421 2.11 x 1 0 "  2.1 1 x 10-" 2.97 x 10-' 7.85 x 10-l' 
(4.44 x 1 0 - l ~ )  (4.44 x 10 ") (6.25 X 1 0 - j ~ )  (1 65 r 10 l') 

V31 1.0 X lO-'O 8,2610-" 6.25 X 10 5.18 X lW9 
(2.10 x 10 l') (1.74 x 10-18) (1.31 X 10-") (1.07 x 10-I6j 

T 3 M 3 4  [43] 8.73 x 10 l '  9.07 x 10-" - 
(1.84 X 1 0 - ' ~ )  (1.91 X 10 ") 

T300lSP-286 2.W x to-" 7.61 x 1 0  l 2  1.29 x 5.00 x 10-" 
1431 (4.49 x 10 19) (7.80 r 10-19) (3.43 x l0 Is) (2.25 x 10-l') 
ASnSOl 2.27 X 10-" 2.27 X IQ-" 1.78 X I O - ~  1.12 X 

142, 431 (4.78 X 10 1 9 )  (4.78 X I O - ~ ~ )  (3.74 X 10-16) (2.36 X 10 l') 

GlaS'Epoxy 

Scotchply: Type 2.42 X 10-" 1.28 X 10-'O 4.94 X 10-' 3.42 X 1 0  
I002 1421 (8.87 x 10-Iy) (2.69 x 10 (1.M x l0-l5) (7.18 x 10.") 

Type 1.48 X 10-" 4.76 X 10-" 2.60 X 10-' 1.19 X I O - ~  
SP-250-S29 (3.12 X 10 1 9 )  (1.00 X 10 18) (5.41 X 10. '~)  (2.5 X 10-l') 

Eglasslepoxy 2.86 r 10 " 7.06 x 10 " 2.23 x 10-' 156 x 10-Y 
id31 (6.02 X 1 0 ' ~ )  (1.49 X 10-") (4.75 X 10-'9 (3.29 X 10 ") 

Unirr are (psx) ' for linglish and (PS)-' for S1 (coefficients in parentheses) 
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Table 5.7. Slrength coepients  for Bni- Wu theory. 

Material [Chapter 4 reference] FI F1 FII Fzz m F M  

CarbonlEpxy 

T3W5208 1421 0 1.44 I O - ~  2.11 X 10-l' 4.83 X 10-' 3.19 X I O - ' ~  1.02 x I O - ~  
(0) (2.09 X 1V8)  (4.44 X 10-l') (1.02 X 10-16) (6.72 X 10-~') (2.16 X 10.'~) 

l431 9.09 X 10.' 1.78 X 10-' 9.09 X 10-" 1.80 X 10-" 1.28 X 10-' 1.24 x I O - ~  
(1.32 X 10-") (2.59 X 10-') (1.91 X 10-l') (3.76 X 10-16) (2.68 X (2.59 X 10.'~) 

T30W934 I431 -1.78 X 10-' - 8.90 X 10-In 4.57 10-' 
(-2.62 X 10-") (1.87 x 1 0 - l ~ )  (9.61 X 10-17) 

T300/SP-286 2.63 X 1 0 . ~  9.13 X 10-' 1.49 X 10-l' 2.54 X 10.' 1.94 X 10-" 4.33 10-' 
l431 (-1.70 x 10-10) (1.38 x 10-') (6.31 x 10-l') (8.78 x 10-l') (7.44 x IO-") (1.93 X 10.'~) 

AS0501 0 9.99 X 10-' 2.27 X 10-l1 4.46 X 10-' 3.18 X 10-" 5.49 10-' 
l42. 431 (0) (1.45 X 10-') (4.78 X 10-l') (9.39 X IO-") (6.70 X 10-") (1.16 X 10-16) 

G ~ P W  
Scotchply: ~ y p e  -4.81 X I O - ~  1.64 1 0 ~  7.33 X 10-l' 1.30 X 10-U 9.76 X 10-In 9.07 I O - ~  
laO2 [42] (-6.98 x 10-In) (2.38 x 10.') (1.54 x IO-") (2.73 X 1 0 - l ~ )  (2.05 x (1.93 x 10-16) 

Type SP-250-S29 -3.05 X 1 0 - ~  1.27 X 10-' 2.65 X lO-" 5.56 X 10-' 3.84 X 10-" 5.10 I O - ~  
(-4.41 X 10-l") (1.83 X l W X )  (5.59 X 10-l') ( 6  X 0 (8.06 X 10-") (1.06 X 10-16) 

E-glasdepoxy -3.06 X I O - ~  1.10 X I O - ~  4.49 X 1 0 - I !  5.90 X I O - ~  5.15 X 10-" 2.37 X 10.' 
1431 (-4.42 X 10-In) (1.61 X 1 0 - ~ )  (9.45 X 10-") (1.25 X 10. '~) (1.09 X 10-l') (498 X 1 0 - l ~ )  c 
S - ~ I ~ S ~ I X P - Z ~ I  -2.42 X I O - ~  5.64 10-> 2.04 X 10-l[ 3.14 X 10-' 2.53 X 1 0 ~ ' "  1 . 2 4 x 1 0 - ~  m 
1431 (-3.52 X I O - ~ " )  (8.16 X 10-O) (4.28 X 10-l') (6.58 X 1 0 - l ~ )  (5.31 X 10-IX) (2.60 X 10-16) g 

BomnlEpoxy E 
B(4X5505 2.71 X I O - ~  7.82 X 10-' 1.51 X 10-l' 3.84 X I O - ~  2.40 X 10.'' 1.06 X 10-' 

a 
1421 (3.94 X IO-"') (1.14 x 10-') (3.18 x 10-l') (8.12 x 10. '~) (5.08 r 10-l') (2.23 x 1 0 - l ~ )  
l431 2.63 X I O - ~  9.13 X 10-S 1.49 X 10-I' 2.54 X 10-g 1.94 X 10-" 4.33 X 10-' 

(3.81 X 10-In) (1.32 X 10-') (3.13 X IO-") (5.32 X 10-l') (4.08 X I O - ' ~ )  (9.07 X 10-") 2 
AramidlEpoxy 

Kcvlar 491EP -2.44 X 10-' 4.45 10-' 1.44 X 10-" 7.47 X 10-' 3.28 X 10-' 4.11 X 10-' 
l42. 431 (-3.54 X IO-') (6.45 X 1V8)  (3.04 X I O - ' ~ )  (1.57 X 10-") (6.91 X 10-") (8.65 X 1 0 - l ~ )  

W 

Units are (psi)-2 for English and (~a)- '  for S1 (Coefficients in parenthases). m is presented for flexibility in selecting FY2. 
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In performing an analysis involving interactive failure theories, the strength param- 
eters are essential. For convenience the strength parameters for the Tsai-Hill and 
Tsai-Wu failure theories are presented in Tables 5.6 and 5.7 for each of the mate- 
rials in Table 4.2 andror Table 4.3. In these tables the appropriate referencesfmm 
Chapter 4 are cited. The English units are presented along with the S1 units (which 
appear in parentheses). 
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5.9 Problems 

The material properties and failure strengths for all composite material systems in 
the following problems are found in Tables 4.2 and 4.3. 

5.1 An E-glasslepoxy laminate is subjected to the state of stress shown. Deter- 
mine if failure will occur according to the maximum stress, maximum strain, 
Tsai-Hill, and Tsai-Wu (with F;2 = -112) theories. assuming a fiber orien- 
tation of 
(A) 30" (B) - 30" (C) 60" 
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5.2 Assume that stress ratios p and q are defined as p = a,/o, and q = r,,/o,. 
A unidirectional laminate of arbitrary positive fiber orientation B is subjected 
to the state of stress shown. Use the maximum stress criteria to determine 
the angle B at which failure would occur for each possible failure condi- 
tion ( X . Y . S ) .  

f P". 

+ 
5.3 For each of the following states of stress, determine if failure will occur 

using the Tsai-Hill criteria for an S-glassKP-251 lamina. 

10 ksi 15 ksi 1 15 ksi 

30" 

l 
I 

5.4 Work Problem 5.3 using FT2 = - 1 2  in the Tsai-Wu failure criteria 

5.5 For each of the following, the fiber orientation B is arbitrary (-90" 5 B 5 
90"). Plot the failure stress ox as a function of B using the Tsai-Wu failure 
theory with FT2 = -1 and FT2 = +l .  What conclusions regarding the inter- 
active term can be drawn from this plot? Assume that the lamina is made 
from Scotchply-1002. 
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5.6 Use the Tsai-Wu theory to plot the failure stress o as a function of the 
arbitrary fiber angle B (-90" 5 0 5 90"). Assume the material is Kevlar 
491epoxy. and F;,  = -1/2. 

5.7 Determine the stress required to produce failure using the Tsai-Wu (with 
F;, = -1/2), Cowin, and Hoffman failure theories (see Table 5.2). Assume 
the material has properties from reference I421 in Chapter 4. 

(A) T300/5208,B = 30" (B) Boron/epoxy, B = 60" 

5.8 A filament-wound composite pressure vessel is to be made from unidirec- 
tional AS13501 graphitelepoxy. The winding angle is O" 5 B 5 90". The pres- 
sure vessel has closed ends and an internal pressure P. In addition, a torque 
T is applied as indicated. The torque will result in a shear stress expressed 
as r = h / t .  where a = pd /2  = 15W psi-in. The diameter d = 30 in. Plot 
the required lamina thickness as a function of angle Q to ensure a safe design 
using 

(A) Maximum stress theory (B) Tsai-Hill theory 

5.9 Assume the closed-end pressure vessel of Problem 5.8 is also subjected to 
an applied bending moment as shown. The bending stress is known to be 
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ue = 5a/6t, where a = 1500 psi-in. Determine the variation of thickness 
with fiber orientation 8. Do not forget to take into account that the bending 
stress is either tensile or compressive, depending upon which circumferential 
position is being evaluated. Assess the failure using 

(A) Tsai-Hill theory (B) Tsai-Wu theory (FTI = -1/2) 

5.10 A unidirectional lamina with an arbitrary positive fiber orientation H is placed 
between two rigid walls in its stress-free state. As the temperature is changed, 
the walls remain the same distance apart. The rollers will never lose contact 
with the walls. Determine and plot the temperature change AT required to 
produce failure as a function of the fiber angle 8 using the material and 
failure theory given. 

(A) T300/5208 (Chapter 4, reference [2 1 l), Tsai-Hill 
(B) E-glass/epoxy (Chapter 4. reference [43]), Tsai - Wu with FT2 = - 1 /2 

5.1 1 A support structure made of a unidirectional composite is subjected to the 
load shown. The fiber orientation is H = 6O" from the vertical y-axis. Use 
Tsai-Wu failure theory with F;, = -1/2 to determine the maximum applied 
load which the structure can support based on an analysis of a plane through 
section A-A. Use elementary strength of materials approximations to define 
the states on plane A-A prior to performing the failure analysis. Neglect 
transverse shear, and assume the material is 
(A) T300/5208 (Chapter 4, reference [42]) 
(B) E-glasslcpoxy (Chapter 4, reference 1431) 
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5.12 The support structure of Problem 5.1 1 is subjected to the applied load shown. 
The fiber orientation angle 9 is allowed to be arbitrary, but limited to positive 
angles. Determine the appropriate angle 9 to assure that failure will not occur 
by plotting 0 vs the failure load F using the Tsai-Hill failure theory. On this 
plot, indicate the safe and unsafe regions assuming a load of F = 500 lb. The 
material is the same as in Problem 5.1 1. Neglect transverse shear effects. 
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LAMINATE ANALYSIS 

6.1 Introduction 

A laminate is a collection of lamina arranged in a specified manner. Adjacent 
lamina may be of the same or different materials and their fiber orientations with 
respect to a reference axis (by convention, the x-axis) may be arbitrary. The 
principles developed in previous chapters are used to establish load-strain and 
stress-strain relations for continuous fiber laminated composite plates. Discus- 
sions are restricted to laminate stress analysis. The procedures established in this 
chapter for thin plates can be extended to other structural elements such as beams, 
columns, and shells, which are beyond the scope of this text. 

6.2 Classical Lamination Theory 

Classical lamination theory (CLT) as presented herein is applicable to orthotropic 
continuous fiber laminated composites only. Derivations in this section follow 
the classical procedures cited in earlier publications [l-51. The approach used in 
formulating CLT is similar to that used in developing load-stress relationships in 
elementary strength of materials courses. An initial displacement field consistent 
with applied loads is assumed. Through the strain-displacement fields and an 
appropriate constitutive relationship, a state of stress is defined. By satisfying the 
conditions of static equilibrium, a load-strain relation is defined, and subsequently 
a state of stress is defined for each lamina. 

6.2.1 Strain-Displacement Relations 

Consider the plate shown in Figure 6.la. in which the xy-plane coincides with the 
mid-plane of the plate. With application of a lateral load, reference point A located 
at a position defined by the coordinates ( x ~ ,  y,,) is displaced. The displacement 
W of this point. as well as an assumed deformed shape of the plate in the X-z 
plane, are shown in Figure 6.lb. The displacements of any point within the plate 
in the X, y, and z directions are denoted by U. V, and W, respectively. The 
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Figure 6.I. Pkate geometq for classical lominofion theory. 

manner in which these displacements are modeled dictates the complexity of the 
strain-displacement and eventually the load-strain relation. The displacements 
are initially expressed by a power series in z,  which takes the form 

The number of terms retained, as well as assumptions made regarding permissible 
strain fields define the form of @, W, and 0. The U. V, and W expressions 
in equation (6.1) represent displacements resulting from both forces (normal and 
shear) and moments (bending and torsional). For thin plates subjected to small 
defonnations, the fundamental assumptions are as follows: 

I. Deflections of the mid-surface (geometric center of the plate) are small 
compared to the thickness of the plate, and the slope of the deflected plate 
is small. 

2. The mid-plane is unstrained when the plate is subjected to pure bending. 

3. Plane sections initially normal to the mid-plane remain normal to the mid- 
plane after bending. Shear strains y, and y, are assumed to be negligible 
(y, = y, = 0). Similarly, normal out-of-plane strains are assumed to be zero 
when plate deflections are due to bending. 

4. The condition of rr, = 0 is assumed to be valid, except in localized areas where 
high concentrations of transverse load are applied. 

These assumptions are known as the Kirchhoff hypothesis for plates and the Kirch- 
hoff-Love hypothesis for thin plates and shells. Different suuctural members such 
as beams, bars, and rods require alternate assumptions. For the case of thick plates 
(or short, deep beams), shear stresses are important and assumptions 3 and 4 are 
no longer valid, requiring a more general theory. 

For thin laminated plates the total laminate thickness h is usually small compared 
to other plate dimensions. A good approximation is achieved by retaining only 
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the first few terms of U and V from equation (6.1). The W displacement field is 
assumed to be constant, resulting in 

The terms U,, V,, and W, are the mid-surface displacements. They are not the 
same as the neutral bending axis displacements presented in strength of materials 
discussions for beams made of isotropic materials. The displacements of the plate 
with respect to the mid-surface are illustrated in Figure 6.lb for the X-direction. 
Similar relations can be established for the y-direction. Using the definitions of 
strain from Chapter 2, and the assumptions just given, the strains are 

au au, a@ 
&,= -= -+z -  

ax h ax 

au aw aw, h = - + - = ( a r + m ) = o  az ax 

The nonzero mid-surface strains are defined as 

The mid-surface may experience curvatures related to the radius of curvature of 
the mid-surface. The curvatures are related to the displacement functions Y and 
Q by 

aQ/ax { } = { (6.3) 

K x j  a@/ax + a*/ax 
Each term in equation (6.3) can be related to a radius of curvature of the plate. Each 
curvature and its associated relationship to Y and Q is illustrated in Figure 6.2. 

The strain variation through a laminate is expressed by a combination of equa- 
tions (6.2) and (6.3) as 
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Figure 6.2. PlaIe curvalures for clnssicol laminalion theory. 

The strains in equation (6.4) are valid for conditions of plane stress ( y ,  = y,, = 
a, = 0).  In cases where the condition on the two shear strains being zero is relaxed, 
the strain relationship given by equation (6.4) contains additional terms (y, and 
y,), which are not functions of the curvatures K,, K , ,  and K,,. 

With y, and y, zero, W and @ can be explicitly defined in terms of W O  from the 
strain-displacement relations as 

It follows directly from equation (6 .3)  that the curvatures are 

Using these definitions of curvature and equation (6.2),  the strain variation through 
the laminate as represented by equation (6.4) can be expressed in terms of displace- 
ments. This form of the strain variation is convenient for problems in which 
deflections are required. Examples of such problems are generally found with 
beams, plate and shell vibrations, etc.. where @ and W are obtained from boundary 
and initial conditions. They are not considered herein. 

6.2.2 Stress-Strain Relationships 

The strain variation through a laminate is a function of both mid-surface strain 
and curvature and is continuous through the plate thickness. The stress need not 
be continuous through the plate. Consider the plane stress relationship between 
Cartesian stresses and strains, 
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Each lamina through the thickness may have a different fiber orientation and 
consequently a different [B]. The stress variation through the laminate thickness is 
therefore discontinuous. This is illustrated by considering a simple one-dimensional 
model. Assume a laminate is subjected to a uniform strain E, (with all other 
strains assumed to be zero). The stress in the X-direction is related to the strain by 
Q,, This component of [Q] is not constant through the laminate thickness. The 
magnitude of Q,, is related to the fiber orientation of each lamina in the laminate. 
As illustrated in Figure 6.3, the linear variation of strain combined with variations 
of D,, (which can be treated as a directional modulus designated as E,) gives rise 
to a discontinuous variation of stress, described by a, = E,&,. 

g;; 
- - 

Figure 6.3. Slress variation in a variable-modulus n t n r e ~ l .  

In order to establish the state of stress at a point in a laminate, the state of 
strain at the point must first be defined. Combining this state of strain with an 
appropriate constitutive relation yields the stress. For general loading conditions 
it is convenient to work with Cartesian components of stress and strain. For a 
specific lamina (termed the "kth" lamina) the appropriate constitutive relationship 
is [elk. Under conditions of plane stress the Cartesian components of stress in the 
kth layer are 

This relationship is assumed valid for any layer of the laminate. 

6.2.3 Laminate Load-Strain and Moment-Curvature Relations 

Formulating a simple working relationship between load, strain, and stress requires 
appropriate load-displacement relationships for the entire laminate. The admissible 
loads are assumed to be a set of resultanr forces and moments, defined for a 
representative section of the laminate. The resultant forces have units of force per 
unit length of laminate (Nlm or Iblin) and are shown in Figure 6.4. Thin-plate 
theory omits the effect of shear strains y,, and y,, but shear forces Q, and Q, are 
considered. They have the same order of magnitude as surface loads and moments, 
and are used in developing the equations of equilibrium [6] .  The dimensions for 
these terms are force per unit length of laminate. 
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To satisfy conditions of equilibrium, resultant laminate forces must be balanced by 
the integral of stresses over the laminate thickness. The balance of forces (assuming 
a, = 0) is 

The resultant moments assumed to act on the laminate have units of length times 
force per unit length of laminate (N-mlm or in-lblin) and are shown in Figure 6.5. 
In a manner similar to that for resultant forces, the resultant moments acting on 
the laminate must satisfy the conditions of equilibrium. The out-of-plane shear 
stresses r, and ry do not contribute to these moments. Moments are related 
to forces through a simple relationship of force times distance. The balance of 
resultant moments yields 

Figure 6.5. Positive sign convention for hminafe mrnenh.  
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A general laminate consists of an arbitrary number of layers (N). The Canesian 
stress components within any one of these layers, say the kth layer, are defined by 
equation (6.7). The fiber orientation of each lamina is arbitrary, so the variation 
of stress through the laminate thickness cannot be expressed by a simple function. 
Each of the N layers is assigned a reference number and a set of z-coordinates to 
identify it, as illustrated in Figure 6.6. The location of each layer is important in 
defining the governing relations for laminate response. Using the topmost lamina 
(labeled N in Figure 6.5) as the first lamina is contrary to classical lamination 
theory procedures and affects numerical results. 

mid-surface 

Figure 6.6. OlmiMte slacking sequence nomenclature. 

Equations (6.8) and (6.9) can be expressed in terms of the stresses in each layer. 
Since the kth layer is assumed to occupy the region between zk and Q-,, it follows 
directly that equations (6.8) and (6.9) can be expressed as 

{"}=?/' N,, k = ~  U } d z  
7x1 k 

where N is the total number of lamina in the laminate. The Q, and Q, have been 
segregated from the other load terms, for reasons to be subsequently discussed. 

Substituting equation (6.7) into the preceding equations, the laminate loads and 
moments are expressed in terms of the mid-surface strains and curvatures as 

{ N,, ; = 2,~.  k = l  (r a-l { $, ) dz + jzk a-I { ; 1 .) (6.13) 

YXY 
Kzy 
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0 

{ ] [ k ( { } d + z 2 { ] z )  M,, k=l Zi I 0 It-l (6.14) 

"X, 
KIY 

Since the mid-surface strains (c0] and curvatures (K) are independent of the z coor- 
dinate. the integration is simplified. The integrals in equations (6.13) and (6.14) 
become simple integrals of (1, z, 2'). The loads and moments can be expressed in 
matrix form, after integration, as 

Each component of the [A], [B], and [D] matrices is defined by 
hl 

The subscripts i and j are matrix notation, not tensor notation. The form of equation 
(6.15) is often simplified to 

(6.17) 

When using this abbreviated form of the laminate load-strain relationship, one 
must be aware that (NI, [M). { c 0 ) ,  and (K) are off-axis quantities. They define 
laminate behavior with respect to the Cartesian ( X - y )  coordinate system. Each 
of the 3 X 3 matrices in either equation (6.15) or (6.17) has a distinct function 
identified by examination of equation (6.17). These matrices are termed: 

[Aij] = extensional stiffness matrix 

[Bij] = extension-bending coupling matrix 

[Dij] = bending stiffness matrix 

The resultant shear forces Q, and Q, are treated differently since they are not 
expressed in terms of mid-surface strains and curvatures. From equation (3.7) we 
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see that the stress-strain relationship for shear in the kth layer is expressed as 

From equation (6.8) the expressions for Q, and Q, can be written as 

It is generally assumed that the transverse shear stresses are parabolically distributed 
over the laminate thickness. This distribution is consistent with Reisner 171 and can 
be represented by a weighting function f ( z )  = c [l  - ( 2 ~ / h ) ~ ] .  The coefficient c 
is commonly termed the shear correction factor. The numerical value of c depends 
upon the cross-sectional shape of the laminate. For a rectangular section, generally 
of interest in laminate analysis, c = 615 (1.20). The derivation of this can be found 
in many strength of materials texts. The expression for Q, and Q, can be written 
in a manner analogous to equations (6.15) or (6.17): 

Following the same procedures as before, i t  can be shown that 

where i. j = 4.5 and h is the total laminate thickness. 

In general, the shear terms are seldom used in beginning laminate analysis. They 
are, however, useful in the formulation of plate analysis, as well as beam deflection 
problems. The stiffness terms (a, QS5, etc.) associated with Q, and Qy can be 
difficult to experimentally determine; therefore, they are often approximated. 

6.2.3.1 Alternate Formulation of A, B, D 

A convenient form for the [A], [B], and [D] matrices can be established by exam- 
ining the position of the kth lamina in Figure 6.7.  Recall that each ply of the 
laminate is confined to the limits zk and a-1. Using these bounds, the following 

Figure 6.7. Rehhnship of T k  and tk to z, and zk-,. 
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definitions result: 

t k  = zk - z k - I  = thickness of the kth lamina 

Z k f  Zk - l  = location of the centroid of the kth lamina from the = 
mid-plane of the laminate. Note that q can be 
either positive or negative. 

From equation (6.16), the terms conraining zk and a-l can be written as 

Substitution of these into equation (6.16) results in 

N 

For transverse shear the analogous expression is 

where c is the shear correction factor previously defined. 

The [A] .  [ B ] .  and [ D ]  matrices defined by equation (6.16) or (6.22) are the primary 
relations between load and strain for laminate analysis. These can be manipulated 
to define mid-surface strains and curvatures as a function of applied loads. It is 
obvious from examination of either equation used to define each component of 
[A ] ,  [ B ] ,  and [D] that they are functions of both lamina material and the location 
of each lamina with respect to the mid-surface. Consider, for example, a four-layer 
laminate consisting of only 0" and 90" plies, which can be arranged in one of two 
manners, as shown in Figure 6.8. All plies are assumed to have the same thickness 
( t k ) ,  and the entire laminate has a thickness of 4 t h .  The [ A ]  matrix is a function of 
[Q].  and ply thickness for each lamina is not influenced by position, since rk  is a 
constant. 
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Figure 6.8. &o possible &minute stacking arrangements resulting in identical [AI 
&es. 

The [D] matrix is influenced by tn, Zr, and [D] for each lamina. Considering only 
D I I ,  equation (6.22) for this term is 

DI I for the laminate of Figure 6.8a and b is 

101901s [90/0Is 

t  : t: 
I D I I I = ~ ~ ~ ~ ~ ~ I I I O + ~ Q I I ~ ~ ~  [ ~ I I I = ~ ~ ~ ~ ~ ~ I I I ~ o + [ ~ I I I o )  

Since [Q,,]o > [a l l ]w,  the laminate in Figure 6.8a has a larger D11 than that of 
Figure 6.8b. The [B] matrix for both laminates in Figure 6.8 is zero. 

6.3 Thermal and  Hygral Effects 

Thermal and hygral effects are dilatational (associated with dimension changes 
only) and influence only the strains. In this section thermal effects are discussed 
and equations relating resultant thermal loads and moments to the load-strain 
relationship of equation (6.17) are derived. Hygral effects are expressed in a similar 
manner. The combined effects of temperature and moisture are incorporated into 
a general governing equation for plane stress analysis. 

6.3.1 Thermal Effects 

For some laminate stacking arrangements thermal effects can result in large residual 
strains and curvatures. In order to illustrate residual (sometimes called curing) 
strains due to thermal effects, a cross-ply laminate (only 0" and 90" lamina) 
is considered. A one-dimensional model is used, and only the strains in the x- 
direction are considered. The coefficients of thermal expansion in the x-direction 
are different in each lamina. Figure 6.9 illusmates the deformations and residual 
strains developed in one direction for a cross-ply laminate. 

Laminates fabricated by curing a stack of lamina at elevated temperatures are 
considered to be in a stress-free state during curing. In the initial stress-free state 
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Figure 6.9. Residual stresses in one direction of a symrnebie laminate. 

(at temperature To)  all lamina are the same length. After the cure cycle is complete 
the laminate temperature returns to room temperature. If the lamina are uncon- 
strained, they can assume the relative dimensions indicated in the middle sketch 
of Figure 6.9, resulting in the strains shown. Each ply is constrained to deform 
with adjacent plies resulting in a uniform residual strain, but different residual 
stresses in each lamina, as indicated in Figure 6.9. These stresses can be thought 
of as the stresses required to either pull or push each lamina into a position consis- 
tent with a continuous deformation (strain). The residual stresses (and strains) can 
be either tensile or compressive and depend on temperature difference, material, 
stacking sequence, etc. If the symmetric cross-ply laminate of Figure 6.9 were anti- 
symmetric (consisting of two lamina, oriented at 0" and 90"). the residual strains 
would be accompanied by residual curvatures. 

The general form of the stress in the kth layer of the laminate given by equa- 
tion (6.7) must be appended to account for temperature affects. Following the 
discussions of Section 3.3.1. the stress components in the kth lamina are 

The aAT terms have the effect of creating thermal loads and moments, which must 
satisfy the conditions of equilibrium. The thermal stresses in the kth lamina are 
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In a manner identical to that of Section 6.2.3, the thermal loads and moments are 

Formulation of INT) and {MT) is analogous to formulating the [A]  and [B]  matrices. 
Provided AT is independent of z, [ N ~ )  and [MT) are related to integrals of 
( I ,  z ) d z ,  respectively. Thermal loads and moments are formed in a manner anal- 
ogous to the formulation of [A ]  and [B] .  As a result, a symmetric laminate with a 
uniform temperature results in ( M ~ ]  = 0. Incorporating thermal loads and moments 
into equation (6.17) results in 

6.3.2 Hygral Effects 

Hygral effects are similar to thermal effects in that moisture absorption introduces 
dilational strains into the analysis. Discussions of hygral effects parallel those of 
thermal effects. Hygral strains produce swelling, and the stresses due to these 
strains, when coupled with mid-surface strains and curvatures, are expressed as 

In equation (6.28) is the average moisture content, as discussed in 
Section 3.3.2.1. These equations are more complex if moisture gradients are 
considered, since the variation of moisture concentration through the laminate 
is a function of z. Moisture can produce both hygral loads and moments. These 
are found by considering equilibrium conditions. The hygral stresses in the kth 
lamina are 

H 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



W Lsainnr Composites 

The hygral loads and moments are 

6.3.3 Combined Effects 

The combined effects of thermal and hygral considerations on a laminate are 
expressible in compacted form as 

where ( N ~ ) ,  (MT) ,  (MH] ,  and { M H )  are defined by equations (6.25), (6.26), (6.29) 
and (6.301, respectively, and [AI, [ B ] ,  and [D]  are given by equation (6.16) or 
(6.22). Mid-surface strains and curvatures are defined by equations (6.2) and (6.3). 
Equation (6.31) can be cast into a more compact form by defining 

(2)  = (N )  + { N ~ )  + ( N ~ )  ( M )  = ( M )  + [MT]  + [ M H )  (6.32) 

Using (6.32), equation (6.31) is expressed as 

(6.33) 

%o distinct cases are associated with equation (6.33): 

Case I: [B] = 0 is the simplest case since normal swains and curvatures are 
uncoupled. Two equations, { G )  = [ A ] ( E ~ )  and (G] = [DHK), must be 
solved. 

Case 2: [B] # 0 is more complicated since the strains and curvatures are coupled. 
and equation (6.33) must be solved. 
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6.4 Laminate Codes 

A code is generally used to identify the lamina stacking sequence in a laminate. 
Knowing the code can aid in identifying the form of [ A ] ,  [ B ] ,  and [ D ]  prior to 
analysis, which can simplify the procedure. 

6.4.1 Single-Layered Laminates 

A single-layered laminate is a unidirectional lamina with multiple layers. If the 
total thickness of the laminate is l ,  the [ A ] ,  [ B ] ,  and [ D ]  matrices are 

[Aij]  = Bi j t  [B,,] = 0 [ D i j ]  = B, , t3 /12  

These forms of each matrix can be verified by examining equation (6.16) or (6.22).  
Since [B]  = 0, bending and extension are uncoupled, allowing simplified solution 
procedures. The mid-surface swains and curvatures are obtained by solving 

For fiber orientations of 0" and 90", B16 = 026 = 0. This results in A16 = A26 = 
D I 6  = D26 = 0. If the fiber orientation is anything other than 0" or 90". both [A]  
and [ D ]  are fully populated. 

6.4.2 Symmetric Laminates 

A symmetric laminate has both geometric and material symmetry with respect to 
the mid-surface. Geometric symmetry results from having identical lamina orien- 
tations above and below the mid-surface. Material symmetry can result from either 
having all lamina the same material, or requiring different lamina to be symmet- 
rically disposed about the mid-surface. A result of symmetry is [B]  = 0. In order 
to have a symmetric laminate, there may be either an even or an odd number 
of layers. Examples of symmetric laminate stacking sequences and notation are 
shown in Figure 6.10. Similarly, their notations can be used for describing lami- 
nates composed of different materials andtor ply orientations. 

6.4.3 Antisymmetric Laminates 

This laminate is characterized by having its layers arranged in an antisymmetric 
fashion with respect to the mid-surface. There must be an even number of plies 
for a laminate to be antisymmetric. The [B]  matrix is not zero. An example of 
an antisymmetric laminate (fiber orientation, ply number, and laminate code) is 
given in Figure 6.1 1. This laminate has several notable features. First, each +B is 
accompanied by a - B .  There is a distinct relationship between components of [B] 
for +B and -6' angles: (QI6)+a = - (QIb) -a  and = -(026)-a, resulting 
in Ale = A l e  = D16 = D26 = 0. 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



206 Laminar Composites 

where the subscripts means symmetric 

Figure 6.10. Examples of symmetric laminareply orientations and codes. 

Figure 6.11. Antisymmetric laminate and code. 

6.4.4 Cross-Ply Laminates 

A cross-ply laminate contains an arbitrary number of plies. each with a fiber 
orientation of either O" or  90". and it can be either symmetric or antisymmetric. 
For the symmeuic cross-ply, [B] = 0, but for an antisymmetric cross-ply laminate, 
[B] can be shown to be 

Since fiber orientations are either O" or 90". Q16 = Q26 = 0 for both plies. There- 
fore, Alh  = A26 = B16 = BZb = D16 = DZ6 = 0, which is Uue for all cross-ply 
laminates. 

6.4.5 Angle-Ply Laminates 

Angle-ply laminates have an arbitrary number of layers (n). Each ply has the same 
thickness and is the same material. The plies have alternating fiber orientations of 
+B and -6. An angle-ply laminate can be either symmeuic or  antisymmetric, and 
[Q] is fully populated. Depending on whether the laminate is symmetric or anti- 
symmetric, certain simplitications can be made in identifying components of [ A ] ,  
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[B], and [D]. Examples of both symmetric and antisymmetric angle-ply laminates 
are shown in Figure 6.12. 

symmetric antisymmetric 

Figure 6.12. Symmetric and anrisymmerrie angle-ply hminales. 

Symmetric. The symmetric angle-ply laminate has an odd number of layers 
and [B] = 0. Since the plies alternate between +8 and -8, the shear terms 
Q,, and change sign between layers. while all other components of [G] 
remain unchanged. For an n-ply laminate of total thickness h, the [A] and [D] 
terms that are easily related to [ a ]  are 

Antisymmetric. The antisymmetric angle-ply laminate has an even number of 
layers (n). It is unique in that only the shear terms of the [B] matrix are present 
(Bl6 and 8z6). The shear terms of [A] and [D] change from the symmetric 
representations just shown to ,416 = A26 = D16 = D26 = 0. The nonzero shear 
terms of [B] are 

As the number of layers becomes larger, BIG and BZ6 approach zero. 

6.4.6 Ouasi-Isotropic Laminates 

A quasi-isotropic laminate results when the individual lamina are oriented in such 
a manner as to produce an isotropic [A] matrix. This means that extension and 
shear are uncoupled (A16 = A26 = 0). the components of [A] are independent of 
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laminate orientation, and for the quasi-isotropic laminate 

The conditions of isotropic response only apply to the [A] matrix. The [B] and 
[D] matrices may or may not be fully populated, and extension-shear coupling is 
possible. Several rules apply for a quasi-isotropic laminate: 

1. The total number of layers must be n 2 1. 
2. All layers must have identical onhotropic elastic constants (they must be the 

same material) and identical thickness. 
3. The orientation of the kth layer of an n-layer laminate is 

Examples of lamina ply orientations which produce an isotropic [A] matrix are 
shown in Figure 6.13. These two examples can be altered by making each laminate 
symmetric. For example, instead of [M)lOl-601, the laminate could be [60/0/-601,. 
This condition would not alter the fact that [A] is isotropic. The components of 
[A] are different in each case, and [RI and [D] change. 

Figure 6.13. Examples of ply orientnlioions for quasi-isotropic Lnminares. 

A laminate may be quasi-isotropic and not appear to follow the rules cited. For 
example, a [0/-45/45/90] laminate is quasi-isotropic, and if each layer were 
oriented at some angle (assume +6W) from its original orientation, [AI remains 
isotropic. The reorientation of each lamina (or the laminate as a whole) by +60" 
results in a [60/15/-751-301 laminate. 
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6.4.7 General Laminates 

A general laminate does not conveniently fit into any of the specifically designated 
categories previously discussed. They consist of an arbitrary number of layers 
(either an even or odd number) oriented at selected angles with respect to the 
x-axis. Simplified rules for estimating components of [A] ,  [ B ] ,  and [D]  do not exist 
as they do for other types of laminates. Each of these matrices is typically fully 
populated, and residual curvatures are generally present. A [0/~45/90]  appears to 
be a general laminate, but is actually quasi-isotropic. Examples of several general 
laminate stacking arrangements are shown in Figure 6-14. 

Figure 6.14. Examples of general &miMle stacking sequences. 

6.5 Laminate Analysis 

Laminate analysis requires the solution of equation (6.33) for the mid-surface 
strains and curvatures. Rather than inverting the entire 6 X 6 matrix relating strain 
and curvature to loads, an alternative procedure can be used. Numerical difficul- 
ties may arise when symmetric laminates ( [ B ]  = 0 )  or other laminates with a large 
number of zeros are encountered. Equation (6.33) can be written as two equations, 
one for loads. and the other for moments: 

The first of these can be solved for (c0] as 

Substituting this into (M) gives 

Next we define an intermediate set of relations between [ A ] ,  [B], [ D ] ,  and their 
inverses as 

[A'] = [ A ] - '  [R'] = [ A ] - ' [ B ]  

[ C ' ]  = [ B ] [ A I 1  [PI = ID] - l B I [ A l ~ ' [ B l  
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This results in the following representation of mid-surface strains and curvatures 
in terms of {E] and {M): 

Solving the {G)  equation for {K) yields 

Substituting this solution for (K) into the previous solution for (cU) results in 

[E') = ((A*] - [B*][D*]-~[c*])(~?) + [B*][D*]-'(M) 

In order to have a more concise form of solution, the matrix multiplications just 
identified are replaced with the following definitions: 

[A'] = [A'] - [B'I[D']~'[C'] [B'] = [B'][D']-l 
(6.34) 

[C'] = -[D']-'[C'] [D'] = 

The resulting solutions for (co) and (K)  as a function of (G) and (M) can be 

where [C'] = [B'lT. This relationship between [C'] and [B'] is verified by standard 
matrix techniques applied to the equations of (6.34). 

After the mid-surface strains and curvatures are determined, the laminate can be 
analyzed for stresses, and subsequent failure. The failure analysis can be directed 
toward either a single lamina or the entire laminate. Failure depends on the state 
of stress in each lamina, which depends on the [Q] for each lamina. If thermal and 
hygral effects are considered, the Cartesian stresses in the kth lamina are 

These components of stress can easily be transformed into principal material direc- 
tion stresses using stress transformations. Similarly, one could initially transform 
the mid-surface strains and curvatures into material direction strains. The principal 
direction (on-axis) strains are related to the mid-surface strains and curvatures by 
the strain transformation matrix: 
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Corresponding to these strains are the on-axis stresses. If both thermal and hygral 
effects are considered, the principal material direction stresses in the kth lamina 
are 

E ,  -al AT - fitM 
(6.38) 

These equations are used in subsequent sections to determine stress variations 
through a laminate, failure modes, and general mechanical behavior of laminates. 

6.5.1 Analysis of Symmetric Laminates 

For symmetric laminates the analysis procedure is simplified since [ B ]  = 0, and 
(MT] = (MH] = 0. If the thermal and hygral effects were not assumed to be 
representable by a uniform laminate temperature and average moisture content, 
respectively, these moments may not be zero. Since there is no bending-extension 
coupling, the mid-surface strains and curvatures can be obtained using a simplified 
form of equation (6.35): 

Symmetric laminates are the most widely used and extensively studied. Tsai 181 and 
Azzi and Tsai (91 used symmetric laminates to correlate experimental results with 
theoretical predictions from classical lamination theory. They dealt primarily with 
cross-ply and angle-ply laminates of varying thickness and found good correlation 
between experimental laminate stiffness and classical lamination theory predic- 
tions. The symmetric laminate is well suited for experimental studies since there 
are no residual curvatures caused by thermal moments, and the response to loads 
is simple to predict. 

6.5. l. l Cross-Ply Laminate 
Consider the laminate shown in Figure 6.15, for which plane stress is assumed. The 
material is AS13501 graphitelepoxy, with the material properties from Table 4.2 
(reference [42] in Chapter 4). The stacking sequence is [0/90~],,  and each ply 
has a thickness tpl, = t = 0.005 in. The laminate thickness is h = 12r = 0.06 in. 
The solution is fomlulated in terms of the total laminate thickness h until stress 
and strain are computed. Thermal effects are considered, but hygral effects are 
neglected. The material properties used are as follows: E ,  = 20.0 X 106 psi, E* = 
1.30 X 106 psi. G ~ z  = 1.03 X 106 psi, "12 = 0 . 3 0 , ~ ~  = -0.17 pinlirfF, andaz = 
15.57 pin/irfF. The reduced stiffness matrix is 

[20.14 0.392 : ] 
[Q1 = 0.392 1.307 X 106 psi 

0 0 1.03 

The (Q] for each lamina is 

[1.307 0.392 ] 
[Qlo = [Q]  IGlw = 0.392 20.14 X 10' psi 

0 0 1.03 
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Figure 6.15. [8/905J, cross-ply IaminaIe. 

The [A] and [ D ]  matrices are formed following the procedures of Section 6.2.3.1, 
which are well suited for numerical work. 

Incorporating h = 121, these matrices are 

[4: 0.392 , ] [0.768 0.033 : ] 
[AI = 0.392 17.0 X 106h [ D ]  = 0.033 1.02 X lo6h3 

0 1.03 0 0 0.068 

Inversion of [A]  and [ D ]  yields 
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Using equation (6.25), the thermal loads are expressed as 

Using a, and a2 given earlier, application of equation (3.22) yields 

Using these (aJo and (aJw values, the thermal loads are 

-0.17 

0 1.03 
15.57 

0 1.03 

The Canesian components of mid-surface strains and curvatures are obtained by 
solving equation (6.35) and are 

A' I 0 

0 I D' 

Prior to addressing the problem with applied loads, it is instructive to examine the 
effect of residual stresses due to curing. Assuming (N) = (M] = 0 ,  the curvahlres 
are zero, but mid-surface strains exist and are 

{: ] 
[ 0.226 -0.005 : 

(co] = = [A'][N~] = -0.005 0.0589 

YIY 
0 0 0.972 

(1y6) - { 5.69 ("U')  AT) 
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Assuming the laminate is cured at 370°F and room temperature is 70°F, AT = 
70" - 370" = -300°F, and the mid-surface strains are 

The variation of strain through the laminate is given by equation (6.4) as {eh = 
{E']  + z{K]. Since (K} = 0, the strain is uniform through the laminate, but the 
stresses are not. Stresses are determined from the general relationship between 
stress and strain defined in Section 6.5 as {uIk = ([&lk - { a J k A T ) .  The 
residual curing stresses for the 0" lamina are 

Similarly, for the 90" lamina 

The cross-ply laminate is unique in that once the Cartesian components of stress 
are determined, it is simple to define the principal material direction (on-axis) 
stresses. This is because in either lamina, one of the on-axis directions coincides 
with the X-direction, and the other with the y-direction as illustrated in Figure 6.16. 

Figure 6.16. Orienlrrhlrrhon of I-2fiber directions with globul x -y directions for U cross-ply 
laminate. 
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The residual stresses developed during curing depend on both macroscopic 
and microscopic conditions. On the macroscopic level the stacking sequence 
gives rise to stresses resulting from the variation of stiffness and thermal 
expansion coefficients across the ply interfaces between homogeneous layers. A 
microscopic effect for thermoplastic matrix composites is morphology associated 
with crystallinity gradients during cooling, which influences the macroscopic 
internal stresses. Processing conditions are closely related to macroscopic stresses 
[IO-121. Experimental techniques for defining residual stress in thermoplastic 
and thermosetting composites using techniques of layer removal [ l  1, 13-15]. 
photoelasticity [161, and laminate failure [17, 181 are often used to investigate 
processing-induced stresses. Detailed discussions of these methods are beyond the 
scope of this text. 

Consider the effect of externally applied loads. The mid-surface strains and curva- 
tures can he determined by solving the relation 

Assume the only load is N,, which can be either tensile or compressive. With 
AT = -300°F. 

Since ( M ]  = 0, [D'] is not required, and { K ]  = 0. Therefore. 

With the laminate thickness being h = 0.06 in, this becomes 

The stress in each lamina (for AT = -300°F) is 

Using the appropriate a ' s  for each lamina, as determined from equation (3.22), 
the stresses in each are 

75.7NX - 22.800 4.88NX + 4550 
1 . W .  + 5550 } {:,Iw = { -0.271NX - 1120 

0 1 
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From these expressions it is a simple matter to evaluate the stresses in each 
lamina as a function of applied load N,. In order to produce a tensile stress in the 
X-direction in the 0" lamina. the applied load N, must overcome the thermal stress 
and therefore must be greater than 22,800175.7 = 301 Ibfin. Similar assessments 
can be made for the other stress components. 

Other loading conditions produce different stress distributions in each lamina. For 
example, assume the [0/905], laminate under consideration is subjected to four- 
point bending as shown in Figure 6.17. The laminate loads in the region of constant 
bending moment are also shown in this figure. Assuming the laminate width is 
1.5 in, the bending moment used for stress analysis is (-PLf8Y1.5, since bending 
moments have dimensions of in-lb/in (discussed in Section 6.2.3). Assuming no 
axial force is applied, the laminate loads consist of only [ N ~ }  and the moment 
M = -PL/12 ( { M ~ )  = 0 for symmetric laminates). Therefore, 

Using equation (6.35) with the appropriate [A'], [D'], {g], and (I@} results in both 
mid-surface strains and curvatures, which are 

Figure 6.1 7. Four-point bending of a [0/905], graphiie/epoxy hminate. 

For a total laminate thickness of h = 0.06 in and A T  = -3WF, the strain variation 
through the laminate is 
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The stress variation through the lamina is 

For the 0" lamina, 

The variable z has two ranges for the 0" lamina: 0.025 5 z 5 0.030 and -0.030 5 
z 5 -0.025. For the 90" lamina the suess is 

where -0.025 5 z 5 0.025. The maximum tensile and compressive stresses occur 
at the top and bottom surfaces of the beam (z = 0.030 for compression and 
z = -0.030 for tension) and are functions of P and L. 

Altering the stacking sequence while retaining the same ply thickness for each 
lamina results in a laminate whose response to axial loads is  unchanged, but which 
has a different response to bending. Consider. for example, the laminate shown in 
Figure 6.18. 

Since A,, = X l Q l k f k ,  the [A ]  matrix is the same as that of the [0/905],. The 
response of either laminate to axial loads is the same. The stress variation through 
each laminate due to an axial load changes as a result of the relative position of 
each lamina, but the stress magnitudes remain the same. 

The response of each laminate to bending is different, a result of the changes in 
the [D] matrix that occur when the stacking sequence is altered. For the [905/01, 
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Figure 6.18, [0/905]% gmphitelepoxy cross-ply laminde. 

laminate 

] X 106 (g)} 1' 
0 1.03 

Using h = 121 results in 

Comparing this to the [D] for the [0/905], laminate shows that its flexural response 
is different. 

Applying the bending moment shown in Figure 6.17 and retaining the same 1%) 
pmduces a strain variation through the laminate of 

The resulting stresses in each lamina are computed to be 
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Assuming L = 12 in and p = 5 lb. the variation of ex through the thickness of 
each laminate is shown in Figure 6.19. The magnitudes of U, are not as significant 
as those of U, and are not shown. The shear stress for each laminate is zero. 

Axial Stress (ksi)  

Figure 6.19. m, through 10/90sIs and 190101, graphi@/epoxy l~minares. 

The stress distribution through the laminate is not symmetric for cases of pure 
bending since the strains are functions of {NT) and {M). If thermal effects are 
ignored, the distribution is symmetric. The components of [D] for the [0/905], 
laminate are smaller than those of the [905/0], laminate, meaning it is more flex- 
ible, which results in higher stresses. The O" lamina for each laminate are oriented 
with their fibers in the direction of the applied moment. Placing the 0" lamina 
farther from the mid-surface increases the overall laminate stiffness. Both lami- 
nates respond in the same manner to axial loads, but their response to flexure can 
be altered by the appropriate arrangement of each lamina. 

These examples do not represent typical cross-ply laminate behavior. The require- 
ment for a laminate to be classified as cross-ply is that each lamina be either O" 
or 90". The laminate itself can be either symmetric or antisymmetric. 

6.5.1.2 Angle-Ply Laminates 

Two symmetric angle-ply laminates with [B] = 0 and [MT] = {MH] = 0 are 
considered. The first is the [i4512, laminate referred to in Section 4.3.3 as a 
candidate for determining G12. and the second is a [15/-154], laminate. 

[f 451b Laminate. The stacking sequence and loading condition for determination 
of G12 is shown in Figure 6.20. The test coupon geometry for this specimen is 
identical to that of the 90" tensile test specimen described in Section 4.3.1. Since 
a tensile test is involved, end tabs are required. Each lamina is assumed to have a 
thickness r, with a total thickness of 81. The stiffness matrix for each lamina is 
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Figure 6.20. [f45Ia hinate for detennimlion of Cl,. 

Where the +Pij and -Qij terms correspond to the +45" and -45" lamina, respec- 
tively. Because of symmeuy, the +45" and -45" lamina combine to form an [A] 
matrix in which A16 = A26 = 0: 

Estimating G12 from this laminate requires strain gage data. The strain gages are 
applied after the laminate is cured, so they cannot be used to evaluate residual 
strains, and thermal effects are not considered. Hygral effects are also neglected. 
From the applied loads shown in Figure 6.20, the load-strain relationship for the 
laminate is 

From this we get 

NZ has units of load per unit length of laminate and can be changed to an expression 
for ox by dividing through by the total laminate thickness (8 t ) .  Using the E: just 
given, and convening from load to stress, 
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The mid-surface strains are 

Since ( K )  = 0, the strain through the laminate is constant. The stress varies 
according to the stiffness in each ply, [Bit. The stresses in either the +45" or 
-45" lamina are 

Q I I  Q12 Q 

{" 'IS i 4 5  = [Da,, +Pl6 *Q16 Q. QM 

The objective is to determine G12; therefore, the shear stress in the principal mate- 
rial direction is required. The principal direction stresses in either the +45" or 
-45" lamina are obtained through use of the stress transformation matrix given 
in equation (2.3). Since ay = 0, the transformation to the principal material direc- 
tion is 

0, 
( ,*rxr)  

The shear stress is a function of the applied stress ox and is not coupled to rxy. 
The strains in the principal material directions are 

The shear stress and shear strain for this laminate are r ~ z  = -nx/2 and y12 = 
-E!  + E : .  Using the relation r = Gy, we see 

The applied load can be monitored during testing, and suain gages mounted on 
the specimen allow for direct determination of E ,  and E , .  The effective modulus 
in the X-direction (on a +45" lamina) and Poisson's ratio in the X-y plane are 

0 0 related to the measured strains by E, = E+45 =ax/c :  and v,, = v+45 = - E ~ / E , .  

Using these two relations and the expression just shown, Gf2 is 
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[IS/-1541, Laminate. Consider the [15/-1541, angle-ply laminate in Figure 6.21 
with E I  = 22.2 X 106 psi, E2 = 1.58 X 106 psi, G12 = 0.81 X 106 psi, v12 = 
0.30, r r l  = 0.011 pinfin/", a2 = 12.5 pin/in/"F, and tpl, = 0.005 in. This 
example (with the exception of material properties) has been discussed by Tsai [l91 
and Jones [2]. Hygral effects are not considered. For this material and the ply 
orientations given, 

22.35 0.4932 : ] 
X 106 psi 

0 0.81 

19.73 1.726 f4.730 
1.726 1.749 f0.461 X 106 psi 

f4.730 10.461 2.042 1 

Figure 6.21. [15/--15,], symmerric angle-ply h i n u & .  

The terms in [Q] for each lamina have units of 10"si. which are not shown in the 
computation of [ A ]  and [D] below, but are reflected in the answer. The laminate 
is symmetric, so [B] = 0. 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



Lnminnte Analysis 223 

The thermal loads are established after the coefficients of thermal expansion for 
each lamina are determined. For the symmetric laminate { M ~ ]  = 0. The coeffi- 
cients of thermal expansion for each lamina are 

Therefore. for the 15" lamina the a ' s  are 

Similarly, for the -15" lamina, 

Using these coefficients for each lamina, the thermal loads are 
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The mid-surface strains and curvatures are found by solving 

Assuming the only load applied is N, ,  the mid-surface strains are 

Without an applied moment ( K )  = 0, and the strain in each lamina is (E"). The 
stress in each lamina is 

{;y},5 = @ll5 ({!l - {;y}15 A T )  

YXY 
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The on-axis stresses (in the principal material directions) are found by using the 
stress transformation equation for each lamina, resulting in 

0.933 0.067 0.518 
0.067 0.933 -0.518 

-0.259 0.259 0.866 

33.22 15.77 

l 
36.0 20.68 

= { + { AT 

0.933 0.067 -0.518 
0.067 0.933 0.518 
0.259 -0.259 0.866 

-3.88 ({;!ii} Nx + { I ~ : ~ i ~ }  A T )  

l 
16.855 -2.175 

Assuming AT = -300°F and N ,  = 500 lhlin, the stresses are 

The distribution of these stresses through the laminate is shown in Figure 6.22. 

6.5.2 Antisymmetric Laminates 

The analysis procedure for antisymmetric laminates is identical to that for 
symmetric laminates. except that [B] # 0. The loss of symmetry complicates 
analysis because (M'] f 0 and [MH) f 0. Extension-bending coupling exists, 
and strains are not constant through the laminate. 
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Stress (ksi) 

Stress (ksi) 

Figure 6.22. Sbess variatinn in a [1Y-15~], haminate. 

For antisymmetric laminates, residual stresses must be considered. Residual 
stresses occur because of differences in elastic moduli and thermal expansion 
coefficients parallel and transverse to the fibers. When lamina are not symmetrically 
disposed with respect to the laminate mid-surface, the in-plane residual stresses 
result in out-of-plane warping, which comes from coupling of the bending and 
stretching deformations. Residual curvatures resulting from postcure cool-down 
are not accurately determined by classical lamination theory, as demonstrated 
by Hyer [20-221 for thermal effects and Harper [23] for moisture effects. As 
demonstrated by examples in the following section, classical lamination theory 
predicts a saddle shape at room temperature for a [90/0] laminate. In reality 
this laminate produces a cylindrical shape at room temperature (often two stable 
cylindrical shapes are observed for this laminate, since snap-through is possible), 
as illustrated in Figure 6.23. This type of unbalanced laminate has been used to 
evaluate residual stresses by Narin and Zoller [24, 251, who found correlations to 
within 5% of predicted curvatures using measurements of postcure curvature. 

Figure 6.23. [0/90] [crminnte shapes (a) at elevated curing temperatures, (b) saddle 
shape, as predicted by CLT, and (c) WO stable cylinrirical shapes that actually exist 
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In predicting the cured shape for antisymmeuic laminates, Hyer [21] assumed 
a displacement field in the z-direction of w(x,  y) = (m2  + by2)/2. This applica- 
tion of kinematic assumptions regarding mid-surface strains results in nonlinear 
displacement fields for Ua and Vo. As a result, the basic definitions of mid-surface 
strain and curvature fundamental to CLT are no longer valid. Although it is impor- 
tant to predict residual curvatures for antisymmetric laminates, a nonlinear theory 
is not attractive because of difficulties in obtaining solutions. The techniques of 
CLT remain applicable to a large class of problems. 

6.5.2.1 Cross-Ply Laminate 

Consider the gla$slepoxy cross-ply laminate in Figure 6.24, with El = 5.6 X 

106 psi, E2 = 1.2 X 106 psi, G12 = 0.6 X 106 psi, "12 = 0.26. a1 = 4.77 pin/in/"F, 
and al  = 12.24 pin/in/"F. This example examines the influence of ply thickness 
for each lamina on curing strains and curvatures predicted by classical lamination 
theory. The thickness of the O" lamina is 12, and the 90" lamina has a thickness of 
11. The total laminate thickness is h = r l  + 12 = 0.30 in, and the centroid of each 
lamina with respect to the mid-surface is at 71 = -[(!I + r2)/2 - r,/21 = -12/2 
and 22 = [(tl + r2)/2 - 12/21 = 11/2. 

Figure 6.24. Antisymmetric cross-ply laminate. 

The [AI, [B] ,  and [D] matrices are written in terms of 11 and 12 as 
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Similarly. (NTJ and (M') are 

The mid-surface curing strains and curvatures are found by solving equation (6.35) 
with (E] = ( N ~ ]  and {M) = [MT). Assume the temperaturedifference is AT = -I. 
The variation of mid-surface strain and curvature as a function of r 2 / r l  (or to/tw) 

is shown in Figure 6.25. As indicated here. the saddle shape predicted by classical 
lamination theory is evident from the fact that one curvature is positive and the 
other negative. As the ratio of r2/ t1  becomes larger, both curvatures and strains 
approach a limiting value, and there is  a reduced coupling effect due to thermal 
expansion coefficient mismatch between adjacent lamina. 

The antisymmetric cross-ply laminas should experience only K, and K, curvatures. 
A slight variation in fiber angle for one of the lamina can result in an X - y  curvature 
and a warped shape after curing. 
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Figure 6.25. MMid-surface slrain and curwhrre as a function of 12/11 for an anfiymmelr* 
cross-ply Iami~uUe. 

6.5.2.2 Angle-Ply Laminate 

Consider the [-154/15] angle-ply laminate in Figure 6.26 with an axial load 
of 1000 lb  applied. Assuming the specimen is 2 in wide, N, = 500 lblin. 
Thermal effects are considered with AT = -300°F. For this material E ,  = 
22.2 X 106 psi, E2 = 1.58 X 106 psi. C12 = 0.81 X 106 psi, "12 = 0.30, a ,  = 
0.01 1 pinlinPF, a2 = 12.5 pinlinlnF, and I = 0.005 in. Using these propenies, 

2235 0.4932 ; ] 
[Q] = 0.4932 1.591 

l 0  
X 106 psi 

0 0.81 

h = 0.25 in 

Figure 6.26. 1-15,/151 mg&-plg laminale. 
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Following the analysis procedures previously outlined, 

19.73 1.726 +4.730 
1.726 1.749 f 0.461 X 106 psi 

f4.730 k0.461 2.042 1 
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From these we obtain 

1.589 -2.249 0.439 
-2.249 25.02 0.054 X I O - ~  
0.439 0.054 13.37 1 

The coefficients of thermal expansion for this material and these ply orientations 
has been previously determined to be 

Noting that [a] has a magnitude of 106 and (a] a magnitude of 10-6, the thermal 
loads and moments are 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



Incorporating the axial load N, = 500 into the expressions for thermal loads and 
moments results in 

444.95 
[ = -142.35 { -15.09 1 ('l = { O.!Ol 1 

Solving for the mid-surface strains and curvatures, 

[ E ~ )  = IA'II~) + [~lll~l 

I 1589 -2.249 0.4391 { 444.95 ] 
= -2.249 25.02 0.054 X 1 0 - ~  -142.35 

0.439 0.054 13.37 -15.09 

I -1.56 -0.193 946.5 
+ -1.93 -0.0238 -0.90 X I O - ~  { } = ( 4 5 6 3 . 1  ] X 

-7.28 -0.90 -15.4 0.101 - 169.6 

(K] = [B'I~(~) + [D'IIM] 
-1.56 -0.193 444.95 
-1.93 -0.0238 -0.90 X IO-' -142.35 
-7.28 -0.90 -15.4 '"1 { -15.09 1 

5.86 -3.97 5.55 0 -500.7 
-3.97 48.1 0.685 
5.55 0.685 53.5 

The sfrain variation through the laminate is 

where -0.0125 5 z 5 0.0125. The stress distribution through the laminate is linear 
and is defined by 
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The stresses at the interface of the +15" and -15" lamina (z = 0.0075) are dual- 
valued because of the change in [D] at that location and are similar to the effects 
illustrated in Figure 6.3. The stress at the interface must be computed using both 

and with z = 0.0075. The strain at the interface is 

946.5 -50,070 
-4563.1 + (0.0075) -83.490 X 10-6 { :y 1 = ({ -169.6 1 { -233,840 1) 
570.9 

The stresses in each lamina ate 

19.73 1.726 4.730 {" = [  1.726 1.749 0.461 
r,, + IS  4.730 0.461 2.042 

570.9 

l 
-4.59 

-5189.3 - 11.66 (-300) = -3.28 ksi 
( L 1 9 2 3 . 4 1  ) {-4.631 

19.73 1.726 -4.730 { ] = [ 1.726 7 4  -0.461 
~ X Y  1 5  -4.730 -0.461 2.042 

570.9 

1 
-5189.3 - 11.66 (-300) = -1.51 ksi 

({-1923.4} {",","l ) {:;3I 

The variation of each in-plane stress component through the laminate is shown in 
Figure 6.27. 

Stress (ksi) 

Figure 6.27. Stress variation through a 1-15,/151 angle-ply laminate. 

6.5.3 Nonsymmetric Laminates 

For completely nonsymmetric laminates, the [A], [B], and [D] matrices are 
generally fully populated, and for cases in which thermal effects are considered, 
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[MT] # 0.  Consider the [90/45/0/-451 laminate in Figure 6.28. The elastic 
constants, loading condition, and temperature difference are El = 26.25 X 106 psi, 
E2 = 1.50 X 106 psi, G12 = 1.04 X 106 psi, v12 = 0.28, a1 = 2.0 in/in/OF, a2 = 
15.0 pinlidF, AT = -300°F. r = O.W5 in, ( M )  = 0 ,  and N, = 500 Iblin. Hygral 
effects are not considered. 

Figure 6.28. [90/45/W-451 h i d e .  

For this material we compute 

[26.37 0.422 ] 
[Q] = [ale = 0.422 1.507 X 106 

0 0 1.04 

Following standard procedures [A].  [B], and [D] are 
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In order to establish the mid-surface strains and CurvaNres, [A'], [B'], and ID'] are 
required and are 

[ 
6.56 -0.990 -2.48 

[A'] = -0.990 2.91 -0.541 X 1 0 - ~  
-2.48 -0.541 10.2 

-3.64 -0.501 0.114 

l 
-0.272 1.46 1.73 X I O - ~  

1.99 -0.191 -4.16 1 
The thermal loads and moments are determined once the coefficients of thermal 
expansion for each lamina are established from equation (3.22) to be 

2 
{a]. = { p ) pin/irJF {a], = { } p i d i d ,  

Thermal loads and moments are determined from equations (6.25) and (6.26) to be 

{N'I = [ D I ~ ( o . o ~ ) I ~ I w  + [al45(0.01){a145 

Combining the thermal loads and moments with the applied loads yields 
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The mid-surface strains and curvatures are 

The variation of strain and stress through the laminate is 

In this expression @lx, {a)r, and z vary from lamina to lamina, causing linear 
variations of stress. For example, in the 0" lamina the stress is 

For the O" lamina 0.0075 5 z 5 0.01 25 in, and for these values of z, 

27 

{ 9 = =(g6 } ksi { " ) = { 4.02 ) ksi 
rxy ~=o.m75 -0.77 z=0.0125 -1.01 

After application of the same procedure to each lamina, the variation of Cartesian 
stress components through the laminate is defined and shown in Figure 6.29. Using 
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Stress (ksi) 

Figure 6.29. Slress dislribulion Ilvough a [98/45/8/ - 451 hainair. 

aress transformations, the principal material direction stress components can be 
established. Note that the stresses are dual-valued at lamina interfaces. 

6.6 Laminate Failure Analysis 

In many cases stress analysis needs to be supplemented by considering laminate 
failure. One approach to estimating laminate failure is through experimentally 
defining the failure loads for specific laminates. The large number of possible 
laminate configurations makes this a time-consuming and expensive procedure. 
Numerous failure theories for lamina were presented in Chapter 5 ,  which form 
the basis of laminate failure analysis presented herein. Laminate failure analysis 
involves two initial phases: 

I. Establish the stress distribution through the laminate, recalling that the principal 
material direction stresses are required for the failure theories presented in 
Chapter 5. 

2. Apply an appropriate failure theory to each lamina. 

The predicted failure of a lamina does not imply total laminate failure. Some 
laminates can function and carry load past the point at which first ply failure 
occurs. The Tsai-Hill failure criterion is used to present laminate failure analysis. 

6.6.1 Cross-Ply Laminate 

The symmetric cross-ply laminate in Section 6.5.1.1 is used to discuss failure 
analysis. For the [0/905], laminate in Figure 6.30. the total thickness is h = 0.060 
in. Because of symmeuy, [B] = 0, and there is no curvature due to curing. The only 
applied load is N,, which is unspecified for discussion purposes. The mid-surface 
strains were determined in Section 6.5.1. l and are 
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Figure 6.30. [0/905], cross-ply lnminofe for failure analysis. 

The Cartesian components of stress in each lamina are 

-0.0867 N ,  + 0.245 - ay {:lk = @lk ({ 3.y ] ({ 3.; } {ly]) AT) 

Since the lamina have either O" or 90" fiher orientations, the principal material 
direction stresses are easy to determine. The on-axis stress components are required 
for failure analysis. and by accounting for [Q] and [a) for each lamina (refer to 
Section 6.5.1. l), they are 

The failure strengths are X =X' = 210 ksi, Y = 7.5 ksi, Y' = 29.9 ksi, and S = 
13.5 ksi. Initially, thermal effects are neglected (AT = 0). Stresses are due only to 
the unknown applied load N,. The general form of the Tsai-Hill failure theory is 

This can be written as 

2 

0; - .,a2 + ($)'.'+ (f) .L = x2 

Since X =X', the sign of UI is not considered. The sign of a2 must be considered 
since Y f Y'. Substituting X, Y, and S into the preceding equation yields two 
forms of the governing failure equation: 
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Assuming N, > 0, the 0" lamina experiences a tensile u2. The failure criterion for 
this lamina is 

Solving yields N, = 2.567 kiplin. For the 90" lamina a2 is tensile, and 

The solution to this equation is N, = 1.537 kiptin. The 90" lamina is predicted to 
fail first, which is not surprising since it is primarily supported by matfix in the 
direction of load application. T'he failure of this lamina does not mean the entire 
laminate has failed. After the 90" lamina fails, the 0" lamina can sustain load. This 
feature of the cross-ply laminate makes it a useful experimental test specimen, 
and symmetric cross-ply laminates are used extensively for the study of matrix 
cracking and damage. 

6.6.1.1 Post-First-Ply-Failure Analysis 

The failed lamina contains a series of matrix cracks as depicted in Figure 6.31. 
These cracks form perpendicular to the applied load (parallel to the fibers) and 
result in a loss of uansverse stiffness in the failed ply. The failed ply is assumed 
to have a stiffness only in the fiber direction, which is completely uncoupled from 
the transverse extensional stiffness. 

Figure 6.31. Malrix cracks in the failed lamina of a [0/905]s bminute. 

Matrix cracks are a frequently observed and extensively studied mode of matrix 
damage. The number of cracks (termed crack density) increases with load (or 
number of cycles in fatigue) until saturation is reached. Saturation is referred 
to as the characteristic damage state (CDS). Macroscopic damage modes, such 
as delamination, do not usually appear until the CDS is reached. The study of 
matrix cracks has advanced the understanding of damage and failure mechanisms 
in laminated composites [26-321 and is beyond the scope of this text. 

In order to completely assess the effects of first ply failure, we must analyze the 
problem again, as discussed by Tsai [19]. The analysis is complicated by now 
having two materials to consider: the original material (W lamina) and the failed 
material (90" lamina). The original material remains unchanged with [Q1 = [a]o. 
The failed ply is characterized by degrading the 90" lamina. Degradation of the 
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failed ply applies only to the matrix. which is assumed to have failed. Although 
some damage may have been sustained by the fibers. they are assumed to behave 
as they originally did. A schematic of an isolated segment of the failed lamina is  
shown in Figure 6.32. 

Figure 6.32. Isolafed segment of faikd lamina. 

Although the matrix has failed, it is assumed that i t  has not separated from the 
fiber. Therefore, in the fiber direction, the stresses and strains can be related by 
ell. No loads can be supported by or transferred across the cracks. Therefore, 
there is  no coupling between axial and transverse strains, and Qlz = 0 for h e  
failed ply. Similarly, shear stress i s  assumed to be eliminated since there is no 
available path for shear transfer across the cracks, and = 0. Since cracks form 
parallel to the fibers. no transverse normal loads can be supported, and QZ1 = 0. 
Based on these arguments, the stiffness matrix for the failed ply only is 

For the failed lamina the matrix is 

This results in new [A] and [A'] matrices. The new [A] malrix is formed exactly 
as it originally was, with the degraded [olw replacing the original @lg0. The new 
[A] matrix is 
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Using h = 12r, the original and degraded [A I  matrices can be compared: 

Original [A] 

Degraded [A] 

[3.353 0.0653 

; ] [A] = 0.0653 17.0 X 106h 
0 0 0.1717 

The only component not affected by the degraded lamina isA22, which is consistent 
with the assumption that in the 90" lamina the fibers can sustain load. From the two 
matrices shown, it  is apparent that the overall stiffness in the X-direction (direction 
of the applied load) has been reduced. The change in [A ]  means that the mid-surface 
strains have changed. Using h = 0.06 in, the strains in the failed lamina are 

In the 0' lamina the stresses are 

In the 90" lamina the degraded [G190 is used and the stresses are 

The 0" lamina now supports a greater stress in both the X- and y-directions, since 
the portion of the applied load originally supported by the 90" lamina has been 
transferred to the 0" lamina. The 90" lamina will only support a load in the 
y-direction. Since the 90" lamina has failed, the failure criterion is applied to 
the 0" lamina, yielding 
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Solving this equation results in N ,  = 1.857 kiptin. Although higher than the first 
ply failure load ( N ,  = 1.537 kiptin), this load is not significantly higher, nor does 
it represent the catastrophic failure load for the laminate. Failure of the 0" lamina 
begins with matrix cracks parallel to the fiber, as with the 90" lamina. In order 
to define the load at which total laminate failure occurs the 0" lamina is also 
degraded. The new [D] for the failed O" lamina is 

20.14 0 0 
IOO = @l0 = [ ; o 01 X lo6 

0 0 

Reformulation of the extensional stiffness matrix using the degraded properties for 
both the 0" and 90" lamina results in 

A,, = x[Dl t r r -  = t2liZl0 + 10[Qlwl0.005) 

20.14 0 0 

= [0'2:14 l . k 7  ;] X lo6 
0 0 0 

This results in new mid-surface strains, which are 

The resulting stresses in each lamina are 

This represents the stresses in each lamina when only the fibers are capable of 
supporting load. The maximum load at which the laminate fails is estimated by 
considering the load at which the first ply failed ( N ,  = 1.537 kiptin). At this load 
the stresses in the unfailed 0" lamina, from Section 6.6.1, are 

1.36 N, = 1.36 (1.537) = 2.1 ksi 0 = 0 = 7  3 {l;) 

The maximum failure load in the fiber direction is X = 210 ksi. The unfailed 0" 
fibers can be stressed an additional 94 ksi. For the failure to be complete the stress 
in the outer lamina has been shown to be 100N,. The additional load the laminate 
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can support above the initial failure load (N, = 1.537 kiplinj is found by equating 
the change in stress, Aa ,  from the initial to final failure (94 ksi) with the stress at 
final failure (IOON,): 

The maximum load the laminate can support is therefore 

Assuming the laminate has a width of 0.50 in, a plot of U, vs E, for this laminate is 
shown in Figure 6.33 with experimental data for a similar material with material 
properties slightly different from those of the laminate in Section 6.5.1.1. The 
theoretical and experimental data show similar trends, but the experimental data 
predicts first ply failure (the point where the slope of the stress-strain curve 
changes) at a lower level. The bilinear response of this laminate is a result of the 
change in laminate stiffness after first ply failure, as indicated by the difference 
between the original and degraded extensional stiffness matrices. The bilinear 
response is typical of cross-ply laminates. Stiffness loss is an indication of matrix 
cracks and is used to identify the onset of matrix cracking in a test specimen. 

6 0 - , , , l i i , l , 1 , 1 , 1 , 1 1 r r  

- 50 - - .- 
- 

2 30 - - 

0 theory (AT=O) 
experimental data - 

0 2000 4000 6000 B000 10,000 

Axial Strain (pinfin) 

Figure 6.33. Stress-strain curve for a cross-ply laminate. 

The theoretical curve in Figure 6.33 does not include the effect of curing stresses. 
In Section 6.5.1.1 the stresses in the principal material directions (with AT = 
-300°F) for each lamina were determined to be 

75.7N, - 22,800 } = } = { .36Nx; 5550 

4.88N, + 4550 {S}, = {z}, = {-0.27l2 - I120 

Application of the Tsai-Hill failure theory to the 90" lamina results in 
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Solving for N,, we find the load for first ply failure is N, = 841 kiplin. Post-first- 
ply-failure analysis is identical to the case in which temperature was neglected. 
The primary exception is that we must compute a new ( N ~ J  using the degraded 
[0]90, resulting in 

The mid-surface strains for the degraded laminate are 

The stresses in the laminate are now defined by 

The stress in each lamina is therefore 

-0.019N, - 9.206 
0 

0 4.97~4, - 40 { = { = [ 4 %] ({ -0.019N, - 9.206 
0 

Comparing these stresses to those for the unfailed laminate reveals that in the 
O" lamina thermal coupling in the X-direction is reduced, while in the y-direction 
it is increased after first ply failure. The laminate can be further degraded as it 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



Laminate Analysis 245 

was for the case without temperature effects. A plot of the results for this case is 
presented in Figure 6.34, along with experimental results and those from the case 
with AT = 0. 

Axial Strain (pintin) 

Figure 6.34. Stress-strain cuwe for a cross-ply larniruue with AT # 0. 

6.6.2 Angle-Ply Laminate 

Consider the 1151-1541, angle-ply laminate from Section 6.5.1.2, for which tply = 
0.005 in and the total laminate thickness is h = 0.50 in. Assume this laminate is 
subjected to an axial load N, as shown in Figure 6.35. 

Figure 

. 

6.35. [IS/-15,]. symmetric angle-ply lnminate with N, applied. 

In Section 6.5.1.2 the stresses in the principal material direction for an arbitrary 
axial load N, and AT = -300°F were determined to be 
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The failure strengths for this material are X = 100 ksi, X' = 110 ksi, Y = 4 ksi, 
Y' = 13.9 ksi, and S = 9 ksi. The direction of N, in Figure 6.35 implies 01 > 0 
for each lamina. Therefore, two possible conditions are considered, one for 0 2  > 0 
and the other for a2  c 0. The Tsai-Hill failure theory is written as 

Assuming 0 2  can be either tensile or compressive, we have two possible failure 
conditions to consider: 

For a 2  > 0 : 0; - 6 1 0 2  + 62.50; + 123.5~:~ = 1 X 10" 

For 0 2  < 0 0: 0; - a102 + 51.750; + 1 2 3 . 5 ~ ; ~  = 1 X 10" 

Considering the +15" lamina, the failure criterion for a tensile oz is 

(36Nz - 6204)' - (36N, - 6204)(-1.485NI - 445.5) 

+ 62.5-1.485NX - 445.5)' + 1235-0.044N, + 13.2)' = 1 x 10" 

This reduces to N: - 477.8NX - 3.618 X 106 = 0. The roots of the quadratic are 
N, = 2156. -1678. Since the applied load is tensile, the negative root is elimi- 
nated. This lamina is then evaluated assuming a compressive 0 2 .  Similarly, the 
-15" lamina is evaluated for a both tensile and a compressive q. The results are 
summarized in the following table. 

Failure load N, (IWin) 

Lamina Tensile a 2  Compressive a 2  

From this table it is evident that the +1Y lamina fails first. The stresses in each 
lamina at the failure load of N, = 2156 are 
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The failed lamina is now degraded so that the [Q] and [a] for the +15" lamina are 

The [A]  matrix is now 

Using the coefficients of thermal expansion from Section 6.5.1.2, the thermal loads 
with AT = -3OO"F are 

Combining (NT) with the applied load N,,  the mid-surface strains are 
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Since there is no curvature, the strains are uniform through the laminate. The 
stresses in the unfailed - 15" lamina are 

The stresses in the principal material direction are 

The 0 2  stress in the nnfailed -15" lamina is compressive, so failure is predicted 
using 

This reduces to Nf - 725Nx - 1.982 X 105 = 0. Solving this quadratic results in 
N, = 937, which is less than the failure load for first ply failure. Therefore, the 
-15" lamina fails immediately after the +IS" lamina. The stress-strain curve for 
the angle-ply laminate does not have a knee as that for the cross-ply laminate did. 

6.6.3 Moisture Effects 

Consider the [0/905], cross-ply laminate of Section 6.6.1 as shown in Figure 6.36. 
Both thermal and hygral effects are considered. Since the laminate is symmetric. 
(MT] = 0 and (MH) = 0. In Sections 6.5.1.1 and 6.6.1 we established that for this 
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Figure 6.36. Cross-ply h i n a l e  involving thermnl and hygml effects. 

laminate. with h = 0.060, 

The hygral loads are determined using equation (6.29): 

The coefficients of hygral expansion for this material are B,  = 0.0 and B2 = 0.44. 
The moisture coefficients for each lamina are defined from equation (3.31) to be 

Therefore, INH) is 

The total laminate load 1%) is 
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The mid-surface strains are [ 3.77 -0087 , ] 
{ E ' )  = I A ' I ( ~ )  = -0.087 0.982 

0 0 8.10 

As previously demonstrated, the 90" lamina fails first; therefore, we focus on 
that lamina. The Cartesian components of stress in the 90" lamina are defined by 
( 4  = [ ~ l g ~ ( & O )  - (aJmAT - ( B l 9 0 R  

Assume A T  = -300°F. and after 1 hour of exposure to a humid environment, 
M = 0.00573. These conditions result in 

Recalling X =X' = 210 ksi, Y = 7.5 ksi, Y' = 29.9 ksi, and S = 13.5 ksi, the 
failure crilerion can be written as 

(-0.274N, - 540)' - (-0.274Nx - 540)(4.893N, + 2109) 

This reduces to N j  + 862N, - 2.164 X 106 = 0. Solving results in a predicted 
failure load of N, = 1102, which is larger than the case without moisture (625). 
Moisture causes swelling, which reduces the strain and subsequent stress in the 
lamina. increasing the average moisture content increases the predicted failure load. 
The increased failure load with exposure to moisture is misleading. As moisture 
content increases, the strength of the lamina decreases as a function of exposure 
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time and M. The strength parameters used in this example did not consider the 
degradation of strength with moisture content. The analysis presented may be 
applicable to short-time exposure, but not long-time exposure. Detailed discussions 
of the effects of moisture can be found various references 133-351. 

6.7 In-Plane Laminate Strength Analysis 

Laminate strength analysis focuses on the entire laminate and uses the concepts 
of strength ratios from Section 5.5.2.1 and presented by Tsai and Hahn [36]. 
The discussions presented herein do not include thermal or hygral effects. Their 
inclusion would alter the magnitudes of stress components, while the analysis 
procedures remain the same. The Tsai-Wu theory failure theory is used in the form 
[Fjlo: + ~ F I Z U I U ~  + F 2 2 o ~  + ~ 6 6 r t ~ 1 ~ ~  + [F lu ,  + F2a2JR = I, where R is the 
strength ratio. For a multidirectional laminate the in-plane strength consists of 
multiple strength ratios (R and R'). These pairs of strength ratios are a function 
of lamina orientation and applied load, and one pair will exist for each ply of the 
laminate. When the analysis is completed, a failure ellipse for the entire laminate 
is constructed. 

The cross-ply laminate in Figure 6.37 is used to illustrate the concepts behind in- 
plane strength analysis. For this problem the thicknesses of the 0" and W lamina 
are varied by controlling the number of plies in each lamina. 

Figure 6.37. Symmetric cross-ply laminate for strength analysis. 

The number of plies in each lamina is defined by No (number of 0" plies) and 
NW (number of W plies). Each ply is assumed to have the same thickness 
( t  = 0.005 in), and the total laminate thickness is defined by h = (No + Nw)r. The 
material properties for this laminate are E l  = 22.2 X 106 psi, E2 = l .58 X 10' psi, 
Glz = 0.81 X 106 psi. v12 = 0.30, X = 100 ksi, X' = 110 ksi, Y = 4 ksi, Y' = 
13.9 ksi, and S = 9 ksi. Assuming F;, = - 112, the strength parameters are Fll = 
9.09 X 10-l', F12 = -6.392 X 10-", FZ2 = 1.799 X 10-8, F% = 1.235 X 1 0 - ~ ,  
F1 = 9.1 X 10-', and F2 = 1.78 X 10-4. T%e stiffness mauix for each lamina is 
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The extensional stiffness matrix is defined by [AI = ( [ g l o N o  + [ g l w N w )  r .  
Bending is not considered, so [ D ]  is not required, and since the laminate is 
symmetric, [B] = 0. The mid-surface strains are determined in terms of an applied 
load divided by the total laminate thickness h, which can be regarded as a normal 
stress applied to the laminate in a specified direction. The first laminate considered 
is a [0/90], laminate. For this case we have N o  = NW = 2 and h = 41. In order to 
define the failure surface for this laminate, a series of unit load vectors are applied. 
For example, the initial unit load vector is 

The [ A ]  and [A']  matrices are determined in terms of the total laminate thickness 
h to be 

0 1.62 

0.0837 -0.0033 0 
0.0837 0 ] ( y) 

0 0.6173 

The mid-surface strains are 

The stress in the principal material direction for each lamina is 

1.866 

0.1313 
( a )  = { : } = l w 0 )  = { - o . y 7 }  (?) 

T12 YO 

where N , / h  is the applied stress in  the X-direction. The failure load for each 
lamina is identified using strength ratios. For the 0" lamina we initially define 
R = N J h ,  so the stresses can be expressed as aI = 1.86611, a2 = 0.0346R, and 
sl2 = 0. Failure for this laminate is predicted from 
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This reduces to 

2.555 X 1 0 - ' O ~ ~  + 7.857 X I O - ~ R  = l 

R2 + 3.075 X 104R - 3.914 X lo9 = 0 

The roots of this quadratic are R = 49.05, -79.82 ksi. In a similar manner, the 'W 
lamina can be evaluated. For the 'W lamina the failure criterion is RZ + 7.44 X 

104R - 3.193 X 109 = 0. The roots of this equation are R = 30.5. -104.9 ksi. 
These roots identify the axial load at which failure of each ply is predicted. 
In addition, other unit load vectors could be used to predict lamina failure. For 
example. 

This analysis can be repeated for other load vector combinations. resulting in 
different sets of R for each case. The results are then plotted for each lamina to 
define the boundaries of the failure envelope for specific unit load vectors. 

An alternative approach is to define the principal material direction stresses in terms 
of arbitrary applied loads N , ,  N , ,  and N,,. For example, assume the laminate in 
Figure 6.38, where N,, = 0. 

Figure 6.38. Laminate subjected to N, and N,. 

The mid-surface strains for this laminate and the stresses in each lamina are 
defined by 
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The stresses in the 1-2 plane can be written in terms of the stresses in the X - y  
plane. which are defined as ux = N,/h and U, = =,/h.  For the 0" lamina we have 

The Tsai-Wu failure theory for this lamina will be 

Expanding and using the appropriate strength parameters results in 

2.57 X I O - ' ~ O ~  - 1.63 X IO-~~O,O,  + 3.17 X I O - ~ ~ O ~  + 7.77 

X I O - ~ U ,  +2.32 X 10-5uy = 1 

This form of the failure criteria defines the failure ellipse in terms of U, and a, for 
the 0" lamina. A similar expression can be generated for the 90" lamina. This form 
of the failure criteria may be more useful for laminates other than the cross-ply 
where U, and U* do not coincide with ox and U,. The failure ellipses for the 0" and 
90" lamina are shown in Figures 6.39 and 6.40, respectively. Included in these 
figures are points corresponding to failures associated with various unit vectors 
using strength ratios. The effect of including shear stress would be similar to that 
discussed in Example 5.5. 

a, (ksi) 

Figure 6.39. Fm'Iure ellipsefor 0" h i n a  in a [0/90]. laminate. 

A composite failure envelope for the laminate is formed by combining the results 
of Figures 6.39 and 6.40, as shown in Figure 6.41. The intersection of the two 
failure ellipses defines the safe region for the laminate. 
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Figure 6.40. Failure ellipsefor 0" h m i ~  in a [0/90], laminate. 

Figure 6.41. Combined failure ellipses for [0/90Is laminnte. 

A similar analysis can be performed for various combinations of ply orientations 
and unit stress vectors (or ox and a, components). This type of analysis is not 
limited to cross-ply laminates. 

6.8 Invariant Forms of [AI, [B], [D] 

Laminate design based on strength can be supplemented with considerations of 
stiffness. By controlling parameters such as material and stacking sequence, the 
[A], [B], and [D] matrices can be tailored to meet certain design requirements. 
Each component of these matrices can be expressed in compact form as 

In this expression Qij is constant for a given lamina, but may vary through the 
laminate. as a function of fiber orientation. Each component of [A] is associated 
with JIQijl(l)dz, whereas the components of [B] and [D] are associated with 
~[Q, , l (z )dz  and J[~i j l (z2)dz ,  respectively. 

The invariant form of Q,! given by equation (3.12) is used to define [A], [B]. and 
[D], as presented by Tsa and Pagano 1371. From Chapter 3, the invariant forms 
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The terms U I  to Us are defined by equation (3.1 1). Consider the terms A l l ,  E l l ,  
and D]], which can be written as 

of Qij  are 

Substituting the expression for QI1 from the invariant form results in 

Q16 

If each lamina is made from the same material, U, .  Uz, and U, can be brought 
outside the integral. Since the limits of integration are -h/2 and h/2, and since 
the first term does not depend on 8, this expression can be written as 

'Ul cos28 cos48 '  
U1 -cos28 COS&' 

U4 0 
U5 0 - cos48 
0 sin 2812 sin48 
. 0 sin 2812 - sin48 - 

where h is the total laminate thickness. Since all D,, terms can be expressed as 
invariants, each A,,, B,,, and D,, term contains a combination of integrals in 8 and 
( l ,  z .  z 2 ) d z .  As a result, it is convenient to define additional parameters: 

For an N-layered laminate, these integrals can be simplified to 
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where i = 1 to 4. and the subscripts A, B, and D refer to the corresponding laminate 
stiffness matrices. In addition, we define 

cos 2&, for i = 1 

w k = {  cos40k, sin 20k, for f o r i = 3  i = 2 (6.41) 

sin Wk. for i = 4 

The angle 8k is the fiber orientation for the kth lamina. Using this notation the 
components of [Al.  [ B ] ,  and [ D ]  are written as 

This form of [AI, [ B ] ,  and [D1 can be used to idenify useful parameters such as 
optimum fiber orientation. For example, consider a general laminate as shown in 
Figure 6.42. In the X, y coordinate system shown, this laminate will respond to 
applied loads according to 

Figure 6.42. Genera2 dominate forms of {A], [B], and [D]. 

Instead of using the X, y coordinate system, it may be better to examine the 
laminate response in an X', y' coordinate system. 

Rotating Ule laminate through some angle 0, a set of transformed ( A ] ,  [B] ,  and [ D ]  
matrices is developed. The transformed laminate stiffness mauices are designated 
as [A]. [B], and [E] .  which is analogous to the transformation from [ Q ]  to [Q]. 
The orientation of fibers in  each lamina in the X - y  coordinate system is B, and 
in the X ' -  y' coordinatc system it is 8'. These orientations are related to the angle 
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Figure 6.43. Definition of B for [Aj, [B], and [D]. 

0 through the relation B' = B - 0 ,  as illustrated in Figure 6.43. The transformed 
angle B' replaces B in the invariant representation of [Q]. 

Trigonometric identies for sine and cosine of the angles n(B - 0) are needed to 
explicitly define [AI, [B]. and [D]. For example, the general form of All expressed 
using the invariants of equation (6.41) is All  = UIVM + U2VlA + U3V3A. Substi- 
tuting for VOA, VIA, and V ~ A  from equation (6.39), and recalling that @' is used in 
the transformed system, 

Trig identies for 2V = 2(Q - 0 )  and W = 4(8 - 0) result in a transformed Al l  
in terms of Q (the lamina orientation in the X - y  system) and 0 (the orientation 
angle of the entire laminate with respect 10 the X axis). Therefore, 

Using the definitions of j" cos mB dz from equation (6.39), 

In a similar manner, the entire [X] matrix is defined as 
- 

UlvM UZVIA u2VL4 U3V3A U3V4A - 
UlVOA  VIA -U2V2,4 u3V3A U3V4A 

0 0 cos 2 0  

0 
0 U Z ~ U / ~  -U2v1,4/2 U3v4A -u3v3A 

0 2 -U2VlA/2 -U3V4A U3V3A - 
(6.43) 
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The [B] and [D]  matrices have the same form as [A], except the V,A terms are 
replaced with V,~_and V i ~  as defined by equation (6.39). The explicit representa- 
tions of [B] and [D] are 

cos 4@ 
sin 4@ 

(6.44) 

Jones (21 presents a complete discussion of special cases of [AI, [B], and [D]. Two 
special cases are considered herein that involve 

L (odd function) dz = 0 and (even function) dz = finite 

Consider first the antisymmetric laminate in Figure 6.44a. The +a and -a fiber 
orientations influence the integrals of Vica,8,0, in equation (6.39). The odd and 
even integrands for the antisymmetric laminate are 

Odd: cos 26(2), cos W(z), sin 26(1, z2), sin#(!, z2) 

Even: cos 26(1, z 2 ) c o ~ ~ ( 1 ,  zZ), sin 26(z), sin48(z) 

(a) Antisymmetric (b) Symmetric 

Figure 6.44. Antisymmetric and symmetric laminates. 

These result in V% = v 4 ~  = V18 = V38 = V 2 ~  = V 4 ~  = 0, which in turn lead to - - - - - - 
A16 = A26 = B11 = 8 1 2  = BZ2 = DI6 = D26 = 0. 
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Next we consider the symmetric laminate in Figure 6.44b for which odd and even 
integrands of V i ( ~ . s , ~ )  are 

Odd: cos 28(z), cos@(z), sin 28(z), sin @(z) 

Even: cos26(1, z2), cosM(1, z2), sin28(1, z2), sinM(1, z2) 

This results in [W = 0. 

The usefulness of [A], [B]. and [a ]  is illustrated by considering the [-15/154], 
angle-ply laminate in Figure 6.45. The material propelties are E l  = 26.25 X 

6 10 psi. E2 = 1.50 x l@ psi, G12 = 1.04 X 106 psi. and v12 = 0.28. The applied 
load is assumed to he N,, and the total laminate thickness is h = 0.05 in (each 
ply is 0.005 in). The stiffness mauix and invariants are 

[ , 3 6  0.422 , ] U, = 11.07 X 106 U2= 12.43 X 106 
[Q] = 0.422 1.507 X 106 U, = 1.297 X 106 U4 = 3.270 X 106 

0 0 1.04 Us = 3.890 X 106 

Figun 6.45. [-15/154]. angle-ply hminnte. 

Since the laminate is symmetric and only an axial load is applied, [B] = 0 and [a ]  
is not needed. The V u  terms are determined from equations (6.39) and (6.40) to be 

Vm = lot = h = 0.050 

VIA = cos28k(zk+1 - Q) = 2[cos(-30) + 4cos(30)]t = 0.0433 

Vu = sin 28i(zk+1 - z k )  = 2[sin(-30) + 4 sin(30)It = 0.0150 

V,A = c ~ s @ ~ ( z ~ + ~  - zk) = 2[cos(-60) + 4cos(60)lr = 0.0250 

VdA = sin@k(zk+l - zt) = 2[sin(-60) + 4sin(60)]r = 0.02598 

Assuming that it is desired to have X16 = h. From the preceding relation, 

0.094cos2@ - 0.267sin2UJ + 0.034cos4@ - 0.033sin4@ 

= 0.094cos2UJ - 0.267 sin2@ - 0.034cos4@ + 0.033 sin4@ 

Incorporating these into the expression for [A] results in 

-0.554 0.533 0.187 0.032 0.034- 
0.554 -0.533 -0.187 0.032 0.034 
0.164 0 0 -0.032 -0.034 
0.195 0 0 -0.032 -0.034 

0 0.094 -0.267 0.034 -0.033 
. 0 0.094 -0.267 -0.034 0.033 - 

1 
cos2@ 

( s i n 2 @ }  
cos4@ 
sin 4@ 
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Solving this expression results in t an4a  = 1.037, from which = 11.51". This 
means that in order to get the desired Zl6 =Az6, the entire laminate must be 
oriented at 11.51" to the x-axis. An alternative view is that instead of a [-15/154], 
laminate rotated through 11.51". one could achieve this response by using a 
[-3.49/26.5141, laminate. In a similar manner we may wish to have ;ill =&z. 
Following the same procedures as before results in = -35.4". 

6.9 Analysis of Hybrid Laminates 

A hybrid laminate is one in which two or more fiberlmatrix systems are combined 
to form new, sometimes superior composite material systems. For example. a lami- 
nate with both glass and graphite (or other fiber combinations) can be ~ 0 n S t ~ c t e d .  
A hybrid offers certain advantages over conventional laminates. A hybrid made 
by using different lamina materials (glass/epoxy and carbonlepoxy, etc.) is called 
a laminar hybrid. Combining different materials in a single lamina produces an 
interlaminar or inrrnply hybrid. Both types of hybrid laminates are shown in 
Figure 6.46. 

Laminar hybrid Interlaminar (intraply) hybrid 

Figure 6.46. bminar  and i n b a l o m i ~ r  hybrid IaminaIes. 

One reason for using hybrid laminates is economics. The cost of manufacturing 
can be reduced by mixing less expensive fibers (glass) with more expensive fibers 
(graphite). For example, a mixture of 20% (by volume) graphite fibers with glass 
fibers can produce a composite with 75% of the strength and stiffness, and 30% 
of the cost, of an all-graphite composite. Applications and physical properties of 
some intraply hybrids can be found in survey papers [38-421. A problem associ- 
ated with understanding the behavior of intraply hybrids is the hybrid effect, first 
noted by Hayashi 1431. It is related to an inability to accurately model cenain 
mechanical properties to using rule-of-mixture approaches and has been inves- 
tigated to a degree [44-491. A problem with intraply hybrid composites is the 
significant scatter in ultimate strength data. 

Conventional CLT analysis procedures can be applied to hybrid laminates, provided 
the constitutive relationship for the material is known. In forming the [A] .  [B], and 
[D] matrices for a laminar hybrid, each lamina may have a different [Q] and [D]. 
Intraply hybrids can be treated as if they were conventional orthotropic lamina 
since [Q] is the same for each lamina. For the purpose of illustration, two material 
combinations are used for laminar hybrids and combined to form an intraply hybrid. 
A simple rule of mixtures approximation is used to determine the modulus of the 
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intraply hybrid, assuming a 50% mixture of graphitdepoxy and glasslepoxy. The 
material properties used the following examples that are presented in Table 6.1. 

Thble 6.1. Material properties for hybrid lnminate examples. 

~ O P C ~ Y  Glass/epaxy Graphitdepoxy Intraply Hybrid 

El (Msi) 5.5 26.3 15.9 
E, (Msi) 1.20 1.50 1.35 

The analysis of hybrid laminates using CLT is illustrated by considering the [0/90] 
laminate in Figure 6.47. In addition to the laminate shown in this figure, a [0/90] 
intraply laminate with the same dimensions is also considered. Both laminates are 
assumed to be subjected to a normal force of N ,  = 500 lblin, with temperature 
effects included. 

Figure 6.47. [0/901 hybrid inminae. 

The [Q] for each material is 

The [A] ,  [B], and [D] matrices for the laminar hybrid are formed using standard 
CLT procedures: 
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[B] = ~ [ B ] k l k ~ k  = ([D1glass(-O.O25) + [a18raphire(~.~~5)) (0.05) 

5.603 0.318 0 1.507 0.422 0 
0.318 1.223 0 + 0.422 26.42 =(l 0 0 0.60 

0 I) X lo6(4.l667 X 10-') l [ o  0 l., 

The thermal loads and moments are determined in a similar manner: 

1.507 0.422 0 
0.422 26.42 

0 ] { y )  = ([ 0 0 l., 
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Assuming AT = -300°F results in thermal loads and moments of 

{ - 7 2  } { O r 1  ) [ N ~ )  = -1 113.3 [ M ~ )  = -19.497 

Recalling that for this laminate we apply N, = 500. 

The resulting mid-surface strains and curvatures are determined from 

{ E - ]  = [A'][%} + [ B ~ J { M )  = 
0 13.1 

0 -9.84 

-629 

{K) = [B']{G] + [ D ' ] [ M )  
0 -9.84 

4.52 -0.184 ,] {-O;l} 
X 10-' -19.497 

0 15.7 
- 1202 

= { l p i  ) X 1" 

The stresses in each lamina are defined by 

For the 0" lamina -0.05 5 z 5 0 and 

5.603 0.318 0 -629 
0.318 1.223 0 ] ~ 1 0 ~ ( { - 1 ~ } ~ 1 0 ~ ~  

= o  0 0.m 
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For the 90" lamina 0 5 z 0.050 and 

1.507 0.422 0 
0.422 26.42 0 ] X 1o6 ({1::6} X I O - ~  

The intraply laminate is analyzed exactly like conventional laminated composites. 
Detailed derivations of [A]. [B], [D], {NT], etc. are omitted. Assume that a [0/90] 
intraply laminate with the dimensions shown in Figure 6.47 is subjected to an axial 
load of N, = 500 Iblin and AT = -300°F. The laminate load and moment are 

{-:6) - { l l ; 2 l 1  
f i  = -1016 ( M ]  = -11.21 

These result in mid-surface strains and curvatures of 

(to) = [A'](%) + [B'][M] = ] X l o-. { 1!;6 ] 
0 12.5 

0.628 0 11.21 
0 -0.628 i] X I O - ~  {-l;21 ] 

+ [ o  0 0 

-473 

The strain through the laminate is 
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Using this strain, the stresses in each lamina are determined to be 

The stress distributions through both the larninar and intraply hybrids are shown 
in Figure 6.48. The shear stress is zero for both laminates because y& = 0 and 
K,, = 0. A small variation in fiber orientation in either the 0" or 90" lamina can 
cause a slight mid-surface shear strain and curvature K,,. The effect these have on 
the stress in each laminate depends on the thickness of each lamina. 

-20 -15 -10 -5 0 5 10 

Stress (ksi) 

Figure 6.48. Normal slresses in [0/90] lnnrinar and intraply hybrLLr. 

6.10 Short Fiber Composites 

Short fiber composites (SFC) cannot generally be analyzed using CLT techniques. 
The response of a short fiber composite may or may not be orthotropic. Shon 
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fiber composites generally consist of chopped fibers or whisken dispersed in 
a matrix. Random fiber orientation and discontinuity through the matrix makes 
it difficult to model response characteristics using CLT. Analysis of short fiber 
composites generally requires experimental evaluation as presented is ASTM STP 
772 1501. Establishing a predictive capability for short fiber composites requires 
appropriate modeling of the mechanism of stress transfer between fiher and matrix. 
Subsequently, modulus and strength predictions can be made. These topics are 
briefly presented and follow the discusions of Aganval and Broutman [51]. In 
some special cases classical lamination theory techniques can be applied to short 
fiber composites as described by Halpin and Pagano 1521 and Halpin, Jerine, and 
Whitney 1531. 

6.10. l Stress Transfer and Modulus Predictions 

In a composite, loads are not applied directly to the fibers, but rather to the matrix. 
The loads experienced by the matrix are then transferred to the fibers through 
the fiber ends. For composites consisting of long continuous fibers, the effects 
of load transfer at the fiber ends can be neglected. For short discontinuous fiber 
composites, end effects have a significant effect on the behavior of the composite. 
The shear-lag analysis presented by Rosen [54) is a modification of the analysis 
developed by Dow [551 and is one of the most widely used techniques for assessing 
stress transfer. In order to evaluate the stress distribution along a length of fiber, 
consider the model shown in Figure 6.49. 

1 U, + do, 

Figure 6.49. Equilibrium modelfor a shorlfrber. 

The normal stress in the composite (ac) comprises a matrix stress (a,) and a fiber 
stress (of). The normal stress in the composite is assumed to be transferred to 
the fiber by a shear stress ( r ) .  Assuming the fiber has a cylindrical shape with a 
radius r and length L, the stresses are expressed in terms of forces by satisfying 
the condition of equilibrium: 
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The equation of equilibrium can be manipulated to yield a relation between or 
and r at the fiber-matrix interface as the differential equation dofldz = 2r/r. 
Integrating over an arbitrary length of fiber results in 

where Cm is the stress at the fiber end. At the fiber end, matrix yielding (adjacent 
to the fiber) or separation of the matrix from the fiber may occur because of large 
stress concentrations. For simplicity it is assumed that am is negligible, resulting in 

The solution of this equation requires a knowledge of the shear stress distribu- 
tion along the fiber. Assumptions regarding the distribution of r are required. A 
common assumption is that the matrix surrounding the fiber is perfectly plastic, so 
that the interfacial shear stress along the fiber is constant. It is assumed to have a 
value equal to the matrix yield stress ( r  = r,) which results in 

The mechanism for generating normal stress in the fiber is through shear transfer. 
The normal stress at each fiber end is zero and the maximum normal stress occurs 
at the mid-length of the fiber ( z  = L/2); therefore, 

The magnitude of (of),,, is limited. Assuming the fiber and matrix have not 
separated, simple rule-of-mixtures approximations are applied. The normal strain 
in the composite (cc) must equal both the fiber ( ~ r )  and matrix (E,) strains, so that 
E, = cr = E,. For the uniaxial state of stress in Figure 6.49, the stress and strain in 
the fiber and composite are related by O, = E c ~ <  and of = Ercf. In order to maintain 
the condition E, = E (  =E,, it is a simple matter to show that (or),, = (Er/EC)oc. 
The elastic modulus of the composite can be approximated using the rule-of- 
mixtures relation given by equation (3.36). 

Transfer of shear into normal stress does not necessarily occur over the entire 
length of the fiber. The length of fiber over which load is transferred is called the 
load-transfer length, designated as L, and shown in Figure 6.50. The minimum load 
transfer length in which the maximum normal stress in the fiber can be achieved 
is obtained from equation (6.48) by noting that the fiber diameter is d = 2r and 
letting L = L,, resulting in 
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Figure 6.50. Lmul-transfer Icngth. 

Equation (6.49) can be expressed in terms of the elastic moduli of the fiber and 
composite, since (af),, = (Ef/E,)a,: 

The distribution of stress along the fiber depends on assumptions of perfectly 
plastic or elastic-plastic matrix material. The problem of interfacial stresses has 
been investigated using various techniques [51,56-641. The distribution of stresses 
as a function of fiber length, from Agarwal and Broutman [51], is presented in 
Figure 6.51 

Figure 6.51. Fiber and shear stress variation vs Jiber length. 

A simple model can be obtained using the Halpin-Tsai equations (3.47-3.50). 
Assume an aligned short fiber composite, as shown in Figure 6.52, as opposed to 
random tiber orientations. The L and T designations in Figure 6.52 refer to the 
longitudinal and transverse directions of the laminated sheet, respectively. 

Figure 6.52. Aligned shorljber composites. 

The parameter c in the Halpin-Tsai equations is assumed to have two distinct 
values, one for the longitudinal (L) and one for the transverse (T) directions. As 
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discussed in Halpin [65], it is assumed that ( = 2Lld for the longitudinal direction 
and ( = 2 for the transverse direction. The moduli estimated from the Halpin-Tsai 
equations are 

where 

These approximations are for an aligned fiber composite. For a random fiber 
composite, as discussed in Sandors [SO], the elastic modulus is approximated from 

where EL and ET are approximated from equation (6.51). 

The stress in the composite can also be estimated using rule-of-mixtures approx- 
imations. Assuming the same perfectly plastic matrix that was used to define 
equations (6.47-6.50). an estimate of a< can be made. The variation of normal 
stress in the fiber (of) depends on the fiber length. We define the average normal 
fiber stress as of = (I/L) Skufdz. This is determined from the area under the of 
curve in Figure 6.51: 

- 1 
of = -(of)mar = - ' y L  for L = L, 

2 d 
(6.54) 

- 
Of = (l  - 2) for L > L, 

For very short fiber composites (L = LT), the shear failure stress is for the matrix, 
not the fiber. Using a simple rule-of-mixtures approximation, the composite stress 
is ac = afuf +amvm. The ultimate strength of the composite depends on fiber 
length, diameter, and the ultimate strength of each constituent meterial (ofu, ornu). 
For a composite with very short fibers, the matrix properties dominate the solution, 
whereas for composites with fiber lengths greater than L,, the ultimate fiber strength 
dominates the solution. The ultimate stress in the composite for either case is 

Another form of short fiher composite is a ribbon-reinforced, or tape-reinforced, 
composite as shown in Figure 6.53. It has a higher strength and stiffness in the 
longitudinal and transverse directions than conventional shon fiber composites. 
Approximations to the elastic moduli for this type of composite can be made 
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Figure 6.53. Ribbon composite sche&. 

using the Halpin-Tsai equations. Because of the geometry of each ribbon, the 
volume fraction of fibers ( v f )  used in the Halpin-Tsai equations is replaced by 
the volume fraction of ribbon (ur). Using Figure 6.53, it can be shown that uf is 
approximated by 

The Halpin-Tsai approximations to the longitudinal and transverse moduli for a 
ribbon composite are 

EL = E,u, + Emum 

ET - 1 + 2(Wr/tc)~ru1 (6.57) 

Em 1 - ~ r v r  

where 

The elastic modulus of the ribbon ( E , )  must be experimentally determined. 

6.10.2 Laminate Approximation 

Halpin and Pagano [52] developed an approximate method for estimating the stiff- 
ness of short fiber composites based on approximations from laminate analysis. 
They assumed the material exists in sheet form as shown in Figure 6.54. Their 
procedure is based on estimating the mechanical behavior of short fiber laminates 

Figure 6.54. ShortJiber composite sheer. 
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using micromechanics approaches presented in Halpin 1651. Based on microme- 
chanics, modulus estimates are a function of the ratio of fiber length to diameter 
(Lfd) and volume fractions of fiber and matrix. The Halpin-Tsai equations were 
used in Halpin 1651 to establish the different parameters in terms of (Ljd). It was 
found that only Ell is sensitive to (Lld). 

Provided the sheet thickness is much less than the average fiber length, the rein- 
forcement can be considered a random 2D array of fibers. These in turn are assumed 
to be quasi-isotropic, which allows one to express the principal material direction 
elastic properties as 

Halpin and Pagano found it convenient to use invariant forms of U1 and Us: U] = 
( ~ Q I I  + 3Qzz + 2Q12 + 4Q%)/8 and U5 = (QII + Q22 - 2Q12 + 4Q6.5318. From 
CLT, QII  = EI /U  - ~ 1 2 ~ ~ 1 ) .  QZZ = Ez/(1 - VIZYZI), Q12 = v12022 = YIQII.  and 
Q66 = G1z. The estimates of the moduli in these expressions come from the predic- 
tions in Halpin [65]. in which equations (6.51) and (6.52) are used to define E l  
and Ez. Substitution of the appropriate moduli into the invariant forms of Ul and 
U2 allows equation (6.59) to be expressed as 

Halpin and Pagano [52] showed a reasonable approximation to E using this 
procedure. 

6.10.3 Laminate Analogy 

The laminate analogy for shon fiber composites was developed by Halpin et al. 
[53]. Although a typical shon fiber composite may appear to consist of random 
fiber orientations (Figure 6.55a), it is assumed that there is actually a fiber bias 
(Figure 6.55b). 

(a) Ran& fiber orientalion (b) Biased fiber orientation 

Figure 6.55. Short Jiber composiles (a) with random Jiber orientntions, and (b) with 
biased @er orienttrtions. 

In the biased fiber orientation, not all fibers are considered to have a preferred 
direction of orientation. The percentage of fibers orientated at some angle 0 can 
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be expressed as f (@)/h, where h is the thickness of the composite and the angle 
B may be positive or negative. The percentage of fibers oriented at some angle is 
estimated by an experimentally determined angular distribution function, 

Accounting for fiber orientation variability in this manner allows each component 
of the extensional stiffness matrix to be defined as 

The terms are determined from the general material behavior for a short 
fiber composite as defined by the procedures of Halpin [65]. For example, assume 
that the procedures in Halpin [65] are used to establish the following [Q] matrix 
for a shon fiber composite: 

['o' O; o,i5] X 106 [Q] = 0.35 1.2 

Next, assume that the short fiber composite (with a total thickness 1) defined by 
this [Q] matrix is examined, and the fiber bias recorded in terms of a percent of 
total fibers at some angle B to a reference axis (assumed to be the x-axis). Assume 
that the following information has been collected: 

Fiber Percent 
Orientation Q Fibers with B 

(Degrees) Orientation 

For each angle the A:,(&) has to be established. Using CLT procedures results in 

A:,(&) = t[Q,,]. Consequently, 

Substituting the appropriate numerical values yields 
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This approximation for predicting the behavior of a short fiber composite is based 
on the laminate analogy. Since the procedure is based on a single-ply lami- 
nate, there is no bending-extension coupling ( [B]  = 0). An approximation to the 
bending stiffness can be made by analogy to CLT, resulting in 

Short fiber composites are not generally treated as laminates. The procedures 
presented here are only a demonstration of approximations that can be made in 
order to use CLT in dealing with estimates of the elastic modulus for short fiber 
composites. 
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6.12 Problems 

The material properties for Ule following problems can be found in Tables 4.2 
and 4.3. 

6.1 Compute [A], [B], and [D] for a T3001.5208 (reference [42] in Chapter 4) 
laminate with each of the following stacking sequences, and discuss your 
results. Assume that the thickness of each ply is 0.005 in. 

(A) [0/60/-601 (B) [0/60/-601, (C) [60/15/-301-751, 
6.2 Determine a laminate stacking arrangement different from those in 

Problem 6.1 that results in a quasi-isotropic laminate for an E-glasslepoxy. 
Assume each ply has a thickness of 0.010 in. Verify the stacking 
arrangements by computing [A], [B], and [D]. 
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6.3 For the stacking arrangement given, plot the variation of ax, ay, and rxy 
through the thickness of an AS13501 (reference 1421 in Chapter 4) laminate 
subjected to the loading condition shown. Assume each ply has a thickness 
of 0.005 in, and neglect thermal and hygral effects. 

(A) [0/45/-451, (B) [4510/-451, (C) [30/45/-45/01, 

6.4 Plot U,, a,, and r,, through a [0/905/452], T30015208 (reference 1421 in 
Chapter 4) laminate for the loading conditions shown. Neglect thermal and 
hygral effects. and assume each ply has a thickness of 0.005 in. 

45 in-lb 
2000 lb 4500 lb 3000 lb 

6.5 Predict first ply failure for an S-glass/XP-251 laminate subjected to a normal 
tensile load N, Iblin. Use the Tsai-Hill theory, and neglect thermal and 
hygral effects. Assume that each ply has a thickness of 0.010 in. The laminate 
stacking sequence is 

(A) [0/90~/45/-45], (B) [90/0~/-45145], 

6.6 Work Problem 6.5 (A) or (B) using AS13501 (reference [42] in Chapter 4). 
assuming it is loaded with only a shear force of -N,,  Iblin, and tply = 
0.005 in. 

6.7 Use the Tsai-Hill failure theory to predict the load N at which first ply failure 
of the [0/45/01-451 T30015208 (reference [42] in Chapter 4) laminate occurs. 
Neglect thermal and hygral effects and assume that tply = 0.005 in. 
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6.8 Determine the residual stresses ox, U,, and r,, through the thickness of the 
following laminates made AS13501 (reference [42] in Chapter 4, with tply = 
0.005). Assume AT = -300°F. 

(A) [0/9&/45], (B) [90/02/45], (C) [45/-45/0/904/451s 

6.9 An E-glass/epoxy (tply = 0.010) laminate is attached to two rigid walls while 
in its stress-free state. Stress concentrations between the wall and the laminate 
and hygral effects are neglected. Determine the temperature drop AT required 
to produce first ply failure using the Tsai-Hill failure theory if the laminate 
stacking sequence is 

(A) [0/902/45], (B) [45/-4510/904145]~ 

6.10 Assume a T30015208 (reference 1421 in Chapter 4) graphitelepoxy laminate 
(rply = 0.005) is cured so that AT = -300°F. Determine the residual defor- 
mations (mid-surface strains and curvatures) for m = 0.005 and m = 00.125 
if the laminate is defined by 

(A) [0/9&] (B) [0/902/45/-451 

6.1 1 Assume the laminate of Problem 6.10 (A) or (B) is subjected to a load N,. 
Determine the N ,  sufficient to produce first ply failure for m = 0.005, or 
the lamina in which failure is predicted as a result of curing strains and 
curvatures. Use the Tsai-Hill theory. 

6.12 Assume the laminate of Problem 6.10 (A) or (B) is subjected to the loading 
shown. Determine the load N, sufficient to produce first ply failure for = 
0.001, or the lamina in which failure is predicted as a result of curing strains 
and curvatures. Use the Tsai-Hill theory. 

6.13 Determine the load N, that can be supported by the laminate shown prior to 
catastrophic failure. The laminate is AS13501 (reference L421 in Chapter 4, 
with tply = 0.005). The laminate was cured at a temperature of 370°F and is 
tested at 70°F. Use the Tsai-Hill theory and neglect hygral effects. 

(A) [904/Ols (B) [0/45/-45/9021, 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



280 Laminor Composites 

6.14 An AS13501 (reference [42] in Chapter 4) laminate is to be used as a 
cantilever beam. A rigid attachment i s  fixed to the free end of the beam. 
The beam must be able to support the loads shown and experience no failure 
at a plane 15 in from the free end of the beam. Each ply of laminate is 
0.005 in thick. Find the load P that results in first ply failure on plane A 
for the following stacking arrangement. Assume AT = -250°F. and neglect 
hygral effects. 

(A) 10/9041s (B) [30/0/902/45Is 

plane A 

6.15 A [90/30/-45/01, laminate is to be used in a design that requires AI = A22. 
Determine the angle at which the laminate must be oriented in order to 
meet the design requirement. Neglect thermal and hygral effects. Assume 
r,], = 0.010 in. The material is 

(A) E-glasslepoxy (B) B(4115505 (reference [42] in Chapter 4) 
6.16 The I901301-45/01, laminate of Problem 6.15 is required to respond so that 

= Dlt.  Determine the angle Q at which the laminate must be oriented in 
order to achieve this requirement. Neglect thermal and hygral effects. Assume 
that t,,, = 0.010 in and the material is 

(A) E-glasslepoxy (B) A93501 (reference L421 in Chapter 4) 

6.17 T300/5208 graphitelepoxy (material 2, reference 1421 in Chapter 4) and 
Scotchply type 1002 glasslepoxy (material l )  are used to construct a laminar 
hybrid. The thickness of a graphite/epoxy lamina is 0.005 in, and the 
thickness of a glass/epoxy lamina is 0.010 in. Laminate stacking sequences 
are designated as a combination of angles and subscripted material numbers. 
Numbers that are not subscripted indicate the number of lamina at a particutar 
angle. For example, (01 /2(902 1/45 11, means that material 1 (glasslepoxy) is 
oriented at 0". then two (2) 90" plies of material 2 (graphitefepoxy), followed 
by one ply of material l at 45". Tlle subscript "S" designates a symmetric 
laminate. Plot the distribution of U,, v,, and r,, through the laminate defined 
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below if it is subjected to an applied axial load of N ,  = 250 lblin and 
AT = -300°F. Neglect hygral effects. 

(A) [451/45~/901/90zI~ (B) l301/45~/01l'M21s 

In Problems 6.18 and 6.19, an intraply hybrid made from materials I and 2 
above is also considered. For the inuaply hybrid a simple rule-of-mixtures 
approximation is used to define material properties, as presented in the 
following table. 

Percent AS13501 

Property 30% 50% 70% 

El 11.8 X 106 15.9 X 106 20.1 X 106 
E2 1.29 X 106 1.35 X 106 1.40 X l06 
G12 0.732 X 106 0.80 X 106 0.91 X 106 
v12 0.266 0.27 0.274 
a1 3.34 X 10-6 2 . 7 5 ~ 1 0 - ~  1 . 5 1 ~ 1 0 - ~  
a2 12.31 X 1 0 . ~  13.2 X 1 0 ~ - ~  12.4 X 10-6 

Assume that the thickness of each intraply lamina is 0.010 in. 
6.18 Assume that the graphitetepoxy constituent of a [0/90z/452], intraply hybrid 

has volume fractions of 30% and 70%. Plot the residual stress distribution 
(in the X - y  plane) through the laminate assuming AT = -300°F. Neglect 
hygral effects. 

6.19 An intraply hybrid with 50% AS13501 is to be used as an interface layer 
between glasslepoxy and graphitelepoxy lamina. Each lamina has a thickness 
of 0.10 in. Plot the stress distribution through the laminate assuming AT = 
-300°F and that i t  is subjected to an applied load N ,  = 2000 lblin. Neglect 
hygral effects. 

(A) [0/45/0] (B) [019010] 

graphitelepoxy 

glasdepoxy 

6.20 Assume a randomly oriented short tiber composite is made from a cumbina- 
lion of E-glass fiber and a polyester matrix with a 30% volume fractlon of 
fibers. The relevant properties for each constituent are Er = 10.5 X 10" psi. 
E, = 0.50 X 106 psi, d = 4400 pin, and L = 0.125 in. Estimate the longitu- 
dinal and transverse moduli as well as Emnd,,. 

6.21 Assume the fiber and matrix propenies of Problem 6.20 are applicable to a 
short fiber composite with a variable volume fraction of fibers and Lld = 
1000. Plot ECmdllm VS ur for 0.25 _C L', 5 0.75. 
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6.22 For the section of ribbon-reinforced composite shown, determine E L  and ET. 
assuming a =0.300, E, = 12.5 X 106 psi, W, =0.375, t, =0.125, E ,  = 
0.50 X 106 psi, W, = 0.250, and t ,  = 0.350. 

6.23 Use the material properties and volume fraction of fiben in Problem 6.20 
to determine E I ( E L )  and E 2 ( E T ) .  Assume vtz = 0.25 and G,2 = 0.75 X 

106 psi. Assume that a short fiber composite has a biased fiber orientation 
as shown in the following table. Determine [A]  for a laminate with a total 
thickness of 0.50 in. 

0 % 
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Appendix A 
Fundamentals of Matrices 

A.l Introduction 

Matrix notation is used extensively in laminate analysis. The mathematics of matrix 
manipulation provides a shorthand method of expressing cumbersome sets of equa- 
tions. The aspects of matrix algebra considered to be most applicable to classical 
lamination theory are presented herein. 

A.2 Definitions and Notation for Matrices 

This matrix is commonly called an m X n matrix, where m X n defines the order 
of the matrix. A matrix in which m # n is called a rectangular matrix. A row 
matrix is one in which m = 1 and n > 1, and a column matrix (load or strain) is 
one in which m > 1 and n = 1. The notation for each of these is presented below. 

A matrix is an array of elements containing a specified number of m rows and n 
columns: 

ROW matrix: [AI = [allalz . . . atn]  

[AI = 

Column matrix: 

-al l  a12 .... aln - 
a21 a22 . . . .  a2n 

. . . . .  . 

. .... . 

. .... . 
-aml am2 . . . .  amn - 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



284 Lminar Corngosites 

'l)pically, a set of brackets ([ 1) is used to define rectangular and row matrices, 
while braces ({ }) are used to define column matrices. 

A special case of the rectangular matrix is the symmetric matrix in which m = n. 
A square matrix has special properties and is used extensively in structural theory. 

A matrix can be expressed in an abbreviated form as 

where the subscripts i and j define the row and column location of the element 
aij within the matrix. 

Several special cases of a square matrix are often encountered in structural analysis. 
The first is the identity matrix, in which aii = 1 and ai, = 0. The identity matrix 
is generally symbolized by I. 

In addition to the identity matrix, a symmetric matrix is often encountered. In 
the symmetric matrix aij = aji, as illustrated here for a 3 X 3 matrix. The main 
diagonal (aii) defines the line of symmetry for the matrix. 

[A] = [i d] 
The transpose of a matrix is an important operation useful in many cases. Any 
matrix (column, row, or rectangular) may be transposed. The transpose of a matrix 
is commonly expressed as [ A ] ~  or [A]'. In order to transpose [A] into [ A ] ~ ,  every 
element ai, in [A] is replaced by aji: 

In forming the transpose, the first column of [A] becomes the first row of [A]~ ,  
the second column of [A] becomes the second row of [ A ] ~ ,  etc. The transpose of 
a row matrix is a column matrix, and the transpose of a column matrix is a row 
matrix. 

A.3 Matrix Arithmetic 

Matrix multiplication or division by a scalar is often used in laminate analysis. In 
these operations each element of the matrix is multiplied (or divided) by the scalar. 
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The second operation of interest is addition or subtraction of matrices. These 
operations can only be performed if the matrices in question are of the same 
order. In adding or subtracting matrices, the corresponding elements of each are 
added or subtracted. From the definition of matrix addition or subtraction, both 
the commutative and associative laws hold. 

Commutative: [A] + [B] = [B] + [A] 

Associative: [A] + ( [B]  + [ C ] )  = ( [A]  + [ B ] )  + [ C ]  

Matrix multiplication in which the product of two matrices ( [A] [B] )  is to be deter- 
mined can only be performed if the number of columns of [A] equals the number 
of rows of [B] .  This condition of conformability of matrices can be expressed by 
the following equation: 

[AI [B1 = [Cl 

(m X n )  '3 X P )  (m X P )  

The mathematical definition of matrix multiplication is 

where n = number of columns of [A] or rows of [B] .  This process is illustrated 
by the following: 

in which 

From the definition of matrix multiplication it can be shown that both the distribu- 
tive and associative laws hold. 

[AI([Bl+ [ C l )  = [AI[Bl+ [AI[CI 
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It is evident from the preceding discussions that matrix addition, subtraction, and 
multiplication are relatively simple topics. The mathematical operation of matrix 
division has not been addressed since it does not exist in the conventional sense. 
The matrix operation analogous to algebraic division is called matrix inversion. 

A.4 Matrix Inversion 

Matrix inversion is shown to be analogous to algebraic division by considering 
the set of algebraic equations below. 

This set of equations can be expressed in matrix form as 

The symbolic representation for this set of equations can be written as 

In order to solve this equation for the unknown values of {X}, the [A] matrix must 
be inverted to yield 

{XI = [Al-l{bl  

where [A]-' is the inverted [A] matrix. Matrix inversion can be defined so that 

Several operations are required in order to define [A]-' in mathematical terms. The 
first operation of importance is defining the determinant of [A] .  The determinant 
of a matrix is commonly written as 

where element aij is located in the ith row and jth column of [A] .  

The Jirst minor of any determinant IAl (corresponding to an arbitrary element ai j) 
is the determinant that remains when the row and column containing element aij 

are eliminated from [A] .  For the 3 X 3 matrix in equation (A.l), the first minors 
corresponding to a l l ,  alz ,  and a13 are given, respectively, as 
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Each element, together with the first minors, defines the cofactor of the determinant. 
Each element will have a first minor and a cofactor. The cofactor of ai, is generally 
denoted as Aij and is written as 

A . .  11 - - ( - l ) '+]  X first minor of ai, 

For the first minors just formed, the corresponding cofactors are 

In a similar manner, all other cofactors can be computed. 

The numerical value of the determinant can be obtained by using all cofactors 
associated with any row or any column of the matrix. The expression for the 
determinant when any row of the matrix is used is 

where i indicates the row being used. If a column is selected, the rule is 
expressed as 

n 

where j represents the column selected for establishing the cofactors. Based upon 
the cofactors just given and equation (A.2), the determinant is 

In order to determine the inverted matrix [AI-' ,  the adjoint of matrix [A] must be 
defined. The adjoint is written as adj (A) .  Assuming Aij is the cofactor of element 
ai, in matrix [A],  the adjoint matrix is defined as 

The inverted matrix [AI-' can now be defined as 
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For the matrix defined by (A.l), the remaining cofactors are 

This results in 

Using this inverted matrix the solution to (A.l) is easily determined from 

The scope of presentations in this text do not require expanding the coverage of 
matrix mathematics beyond this point. 
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Appendix B 
Generalized Transformations 

The stress and strain transformations presented in Chapter 2 are valid only for 
rotations about the z-axis. Although this represents the most commonly used trans- 
formation from one coordinate system to another, it may not be general enough 
for all applications. Therefore, the stress and strain transformations applicable to 
arbitrary rotations are presented herein. It is assumed that X ,  y, and z represent the 
original coordinate system, and X', y', and z' the transformed coordinate system. 
Transformations from the unprimed to the primed system are assumed to be in 
accordance with the possible rotations shown in Figure B.1. Development of the 
general transformation equations is not presented, since they are well established 
and typically are available in many mathematics and engineering texts. 

Figure B.I. General coordinate rotations. 

The direction cosines relating the primed and unprimed coordinate systems are 
presented next. As with conventional transformations, the designations 1, m, and n 
are used to represent the direction cosines of the transformed axis with the original 
axis. The direction cosines defined here are similar to those used in defining the 
orientation of a vector in introductory statics courses. For example, if a, j3, and y 
are used to define the angles from the X ,  y, and z axes, respectively, to a specified 
vector. the direction cosines are defined as 
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The difference between these direction cosines and those used for a general trans- 
formation is that three possibilities exist for each axis. The direction cosines 
relating each primed and unprimed axis are 

Direction cosines 

X Y z 

X' 1, m l n l 
Y' 12 m2 n 2 

2' 13 m3 n 3 

Stress transformations from the unprimed to the primed system are defined in terms 
of a transformation matrix as 

where [T,] is defined in terms of direction cosines as 

For a case of plane stress where a, = t, = txz and all rotations are about the 
z-axis (as shown in Figure B.2), the direction cosines are 11 = m2 = cos 8, m1 = 
sin 8, l2  = - sin 0, n3 = 1, and n l = n2 = l3  = m3 = 0. Using these, the stress 
transformation matrix in Chapter 2 results: 

cos2 6 sin2 6 2 sin 6 cos 6 } sin2, 

t x ~  - sin e cos e sin e cos 0 cos2 e - sin2 8 

Figure B.2. Coordinate rotations about the z-axis. 
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The generalized form of strain transformation is similar to that for stress transfor- 
mation, except that [To] is replaced by [T,] and is [:l 

= LT,] 
Ez 

y;z YYZ 
Yxz Yxz 
y:y Y ~ Y  

Assuming that strains are allowed to be transformed via coordinate axes as defined 
by Figure B. 1, [T,] is expressed as 

As demonstrated for the case of plane stress, a simplification of this matrix is also 
possible. The result, using direction cosines previously defined for the plane stress 
case, is a strain transformation matrix identical to that defined in Chapter 2. 
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Appendix C 
Summary of Useful Equations 

C.1 Lamina 

Stress and strain transformations: 

where 

m2 n2 mn 
n2 m2 -mn ] (2.1) 

-2mn 2mn m * - n 2  

m2 n2 2mn 
n2 m2 -2mn ] (2.3) 

-mn mn m2 - n2 

a n d m = c o s $  andn =sin$.  

Off-axis stress-strain relationships: 

where 

Q11 = e11m4 + 2(Ql2 + 2Q66)m2n2 + Q22n4 
- 
Q I 2  = (Q11 + Q22 - 4f?66)m2n2 + e1z(m4 + n4)  
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Plane stress stiffness matrix: 

Off-axis relationship: 

Plane stress compliance matrix: 
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Off-axis strain-stress relationship: 
- - -  

S12 S16 

- - -  
(3.15) 

where 
- 
S11 = sllm4 + (2S12 + s66)m2n2 + s22n4 
- 
S12 = (S11 + S22 - s66)m2n2 + s12(m4 + n4)  
- 
S16 = (2Sll - 2S12 - s66)m3n - (2SZ2 - 2S12 - s66)mn3 
- (3.16) 
SZ2 = s l l n 4  + (2S12 + sM)m2n2 + sZ2m4 

SZ6 = (2Sl - 2S12 - sa)mn3 - (2322 - 2S12 - s66)m3n 

= 2(2sl l  + 2~22 - 4 ~ 1 2  - ~6~)m 'n '  + sM(m4 + n4)  

Relationships between on-axis and off-axis properties (3.19): 

where 
2 2vI2 1 2 2V12 1 C l  = c2= -+--- 

El El G12 E2 E1 G12 
Thermal and hygral effects for plane stress applications: 
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On-axis stress-strain relations including thermal and hygral effects: 

Off-axis stress-strain relations including thermal and hygral effects: 

Rule-of-mixtures approximations: 

E1 = E w f  + Emu, 

C.2 Failure Theories 

Tsai-Hill: 
2 

U - 1  ( U  ( )  T: =X' (5.5) 

Tsai-Wu: 

~ 1 1 0 :  + 2Fnalaz  + ~22022 + ~ 6 ~ t : ~  + F l u 1  + F202 = 1 (5.7) 

C.3 Classical Lamination Theory 

For transverse shear, the analogous expression is 
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Thermal and hygral effects: 

Load, strain-curvature, and [A] ,  [B] ,  [D] relationships: 

Off-axis stresses in kth lamina: 

On-axis strains and kth-layer stresses: 
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GLOSSARY 

The following terms are intended to aid those unfamiliar with the area of composite 
materials. This list does not exhaust the possibilities, but does contain many that 
a novice in the area of composites may find useful. 

Advanced Composites. Generally considered to be composite materials with struc- 
tural properties superior to those of aluminum. Composite material systems such 
as borodepoxy and carbodepoxy are included in this category. 

Angle-Ply Laminate. A laminate formed as result of orienting individual lamina 
at +8 and -8 with respect to a selected reference axis. The total number of 
lamina (plies) does not matter, and an angle-ply laminate is often referred to as a 
bidirectional laminate. 

Anisotropy. A material response in which the material properties vary with the 
orientation or direction of a set of reference axes. 

Autoclave. A special type of pressure vessel that can maintain specified temper- 
atures and pressures for designated periods of time. Autoclaves are often used to 
cure organic matrix composites. 

BFRA. An acronym for boron fiber reinforced aluminum. 

BFRP. An acronym for boron fiber reinforced plastic. 

Balanced Laminate. A laminate in which the total number of lamina (plies) 
oriented at an arbitrary angle of +8 are balanced by an equal number of lamina 
oriented at -8. 

Balanced Symmetric Laminate. A balanced laminate that is also symmetric. 

Bending-Extension-Coupling. The coupling between bending and extension that 
results from the existence of the [B] matrix for a laminate. 

www.iran-mavad.com 
مرجع دانشجویان و مهندسین مواد



298 Glossary 

Bending-Twisting-Coupling. The coupling between extension and shear terms 
DI6 and DZ6 in the [D] matrix. For a case of pure flexure, it is analogous to the 
shear-extension coupling that is present in off-axis unidirectional lamina. 

Bidirectional Laminate. An angle-ply laminate in which the fibers are oriented 
in two distinct directions only. 

Bleeder Cloth. A nonstructural cloth (usually made from fiberglass). It is typically 
placed around a composite component during curing to absorb excess resin, and 
is removed after curing. 

Boron filament. A manufactured filament that consists of B4C vapor deposited 
onto a tungsten core. 

Breather. A porous material generally placed within a vacuum bag to aid in the 
removal of air, moisture, and volatiles during cure. 

Bundle Strength. The strength resulting from a mechanical test of parallel fila- 
ments, with or without an organic matrix. The results of this test are generally 
used to replace those from tests of a single fiber. 

Carbon Fiber. The general name of a wide range of fibers, all of which are made 
from carbon. 

CCRP. An acronym for carbon (or graphite) cloth reinforced plastic. 

CFRP. An acronym for carbon (or graphite) fiber reinforced plastic. 

Compliance. A measurement of the softness of a material, as opposed to its 
stiffness. It is the inverse of the stiffness matrix. 

Constituent Material. An individual material used to produce a composite mate- 
rial. Both the fiber and matrix are constituent materials. 

Coupling. The interaction of different individual effects into a combined effect. For 
a composite lamina this refers to the appearance of shear under the application 
of normal loads, and for a laminate it refers to the existence of curvature with 
application of normal loads. 

Crack Density. The number of distinctive cracks (generally appearing in the 
matrix) per unit volume of composite. 

Crazing. The formation of matrix cracks, which may be confined to the matrix or 
located at the interface between matrix and fiber. 

Cross-Ply Laminate. A special case of an angle-ply laminate in which the indi- 
vidual lamina are oriented at either O" or 90" to a reference axis. This laminate is 
bidirectional and can have an arbitrary number of lamina. 
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Cure. The term typically reserved for the changing of properties of a thermosetting 
resin in order to process a composite. The chemical changes within the resin are 
irreversible. 

Curvature. A geometric measure of the bending andlor twisting of a plate, beam, 
or rod. 

Dam. An absorbent ridge surrounding a laminate during the cure process. The 
dam prevents resin from running out during the process. 

Debond. An area of separation within or between the individual plies of a lami- 
nate that generally results from contamination during the cure process, improper 
adhesion during cure, or interlaminar stresses. 

Degradation. The loss of material property characteristics (strength, stiffness, etc.) 
typically resulting from aging, corrosion, or fatigue. 

Delamination. The debonding of individual lamina, which primarily results from 
interlaminar stresses. Delamination can be controlled by proper design considera- 
tions. 

Epoxy. A thermosetting resin made from a polymerized epoxide. Epoxy is 
commonly used as a matrix. 

Expansion Coefficient. A material-dependent measurement of the expansion 
(swelling) of a composite material due to temperature changes of moisture 
absorption. 

Fiber. A single filament, either rolled or formed in one direction, and used as the 
primary reinforcement for woven or nonwoven composite material systems. 

Fiber Volume Fraction. The percentage of fiber contained in a representative 
volume of a composite material system. 

Fick's Law. A diffusion relationship used to describe moisture migration in a 
material. 

Filament. A continuous fiber with high stiffness and strength, used as the primary 
constituent in continuous fitter lamina. 

Filament Winding. A manufacturing technique by which filaments (and resin) 
are placed on a mandrel in a specific manner. Its primary use is in constructing 
pressure vessels, pipes, or other axisymmetric structures. 

First-Ply Failure Load. The load that causes the initial failure of a ply within a 
laminate. 

Free Expansion. Thermal or hygral expansion without external stresses. 
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GFRP. An acronym for glass fiber reinforced plastic. 

Hybrid. A composite material system composed of more than two constituents, 
such as a glassJgraphiteJepoxy composite. Intralaminar hybrids have individual 
plies made from two or more distinct fibers and matrix. Interlaminar hybrids have 
individual plies made from different fiberimatrix combinations. 

Hygrothermal Effect. The change in properties resulting from moisture absorption 
and temperature changes. 

Interface. A boundary (or transition) region between constituents (fiber and matrix) 
or between individual lamina within a laminate. 

Interlaminar Stresses. Stress components associated with the thickness direction 
of a plate. 

Invariant. Constant, regardless of the orientation of the coordinate system. 

KFPR. An acronym for Kevlar fiber-reinforced plastic. 

Kirchhoff-Love Assumptions. The basic assumptions from which classical lami- 
nation theory is established. 

Lamina. A single layer (ply) of unidirectional (or woven) composite material. 

Laminate. A collection of unidirectional lamina, stacked and arranged in a specific 
manner. 

Laminated Plate Theory. Sometimes referred to as classical lamination theory 
(CLT), it is the most commonly used method for initial analysis and design of 
composite laminates. 

Macromechanics. Term commonly used to describe the structural behavior of 
composites on the macroscopic level. 

Mandrel. A male mold generally used for filament winding. 

Matrix. The material that binds, separates, protects, and redistributes loads into 
the fibers of a composite. 

Micromechanics. Term commonly given to the analysis of a composite material's 
response based on a model of the constituent materials and their interaction with 
applied loads. 

Mid-plane. The geometric middle surface of a laminate, used as a reference posi- 
tion for determining laminate response characteristics. It is generally defined by 
z = 0. 
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Moisture Absorption. The increase in moisture content resulting in swelling of 
the material. 

Mold. A cavity in which a composite part is placed so that it can be formed into 
the shape of the cavity. 

Mold Release Agent. A lubricant applied to the mold surface so that the part can 
be easily removed after curing. 

Multidirectional Laminate. A laminate having multiple ply orientations through 
its thickness. 

Neutral Plane. A plane that experiences no stretching, and subsequently no stress. 

Off-Axis. Not coincident with the principal material directions. 

On-Axis. Coincident with the principal material directions. 

Orthotropic. A material having three mutually perpendicular planes of symmetry. 
In an on-axis configuration, no extension-shear coupling exists. 

Peel Ply. A fabric applied to a laminate prior to curing. It protects the laminate 
from dirt, etc., and is peeled off before curing. 

Phenolic. A thermosetting resin generally used for elevated temperatures. 

Ply Drop. The reduction of the number of plies in a specific area of a laminate, 
thus decreasing its thickness. 

Postcure. An additional exposure to elevated temperatures after the initial cure 
process. 

Preform. A lay-up made on a mandrel or mockup that is eventually transferred to 
a curing tool or mold. 

Pre-preg. A woven or unidirectional ply or roving impregnated with resin, and 
ready for lay-up or winding. Pre-preg is short for preimpregnated. 

Quasi-Isotropic Laminate. A laminate that has an [A] matrix similar to that of 
an isotropic material, with A l l  = A22, and A13 = = 0. 

Residual Stress. In a composite, it is the stress generally resulting from cooldown 
after curing andor moisture content. 

Resin. An organic material with a high molecular weight. Typically, it is insoluble 
in water and has no definite melting point and no tendency to crystallize. 

Resin Content. The percentage of resin within a composite material. 
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Resin-Rich Area. An area within a composite where the resin content is higher 
than the average content throughout the laminate. It generally results from improper 
compaction during cure. 

Resin-Starved Area. An area within a composite where the resin content is lower 
than the average content throughout the laminate. It has a dry appearance, and 
filaments or fabric do not appear to have been completely wetted during cure. It 
is probably a more severe condition that a resin-rich area in terms of structural 
integrity. 

Roving. A loose assembly of filaments that can be impregnated for use in filament 
winding, braiding, and unidirectional tapes. 

Rule of Mixtures. A linear relationship between volume fractions and constituent 
material properties used for predicting macromechanical material behavior. 

Scrim. A reinforcing fabric woven into an open mesh and used in the processing 
of tape and other materials for handling purposes. 

Shear Coupling. The presence of a shear strain (or stress) under loading conditions 
generally associated with normal deformations only. 

Sheet Molding Compound. A short fiber reinforced composite generally desig- 
nated by the acronym SMC. 

Symmetric Laminate. A laminate that has both material and geometric symmetry 
with respect to the geometric central plane (mid-plane) of the laminate. 

Tack. A handling property characteristic generally associated with the stickiness 
of pre-preg tape. 

Thermal Loads. Laminate loads associated with hygrothermal effects resulting 
from the difference in operating and curing temperatures of the laminate and ply 
orientations throughout the laminate. 

Thermoplastic. An organic material characterized by a high strain capacity and a 
non-cross-linked polymer chain. A thermoplastic can be easily reformed with the 
application of high temperatures. 

Thermosetting Plastic. An organic material that has cross-linked polymer chains. 
A thermosetting plastic cannot be reformed after it is initially cured. 

Tow. A bundle of loose, untwisted filaments. 

Unsymmetric Laminate. A laminate that does not have material and geometric 
symmetry with respect to its geometric central plane (mid-plane). 
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Vacuum Bag. An outer covering for a composite material curing assembly. The 
vacuum bag can be sealed and evacuated to provide a uniform compaction pressure. 
It is most often made from a flexible nylon, Mylar, or other elastic film. 

Volume Fraction. The fraction of either constituent (fiber of matrix) contained 
within a volume of composite material. 

Void Content. The volumetric percentage of a composite that contains voids. For 
most curing procedures, the void content is generally less than 1%. 
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ADDITIONAL REFERENCES 

References for Composite Materials 

Books and journals represent the major sources from which information regarding 
composite materials can be extracted. This section presents a list of references; 
however, it excludes many references to manufacturing processes. Conference 
proceedings are not cited since their contents receive recognition in journals. 
Books are listed first, followed by publications (primarily ASTM publications), 
and then journals in which papers dealing with composite materials are 
presented. 

Books 

Agarwal, B. D., and L. J. Broutman. Analysis and Performance of Fiber Compos- 
ites. New York: John Wiley and Sons, 1980. 

Ambartsumyan, S. A. Theory of Anisotropic Plates. Westport, CT: Technomic, 
1970. 

Ashbee, K. H. G. Fundamental Principles of Fiber Reinforced Composites. West- 
port, CT: Technomic, 1989. 

Ashton, J. E., and J. M. Whitney. Theory of Laminated Plates. Westport, CT: Tech- 
nomic, 1970. 

Ashton, J. E., J. C. Halpin, and P. H. Petit. Primer on Composite Materials: Anal- 
ysis. Westport, CT: Technomic, 1969. 

Beland, S. High Performance Thermoplastic Resins and Their Composites. Park 
Ridge, NJ: Noyes Data Corporation, 1990. 

Broutman, L. J., and R. H. Krock. Composite Materials, Vols. 1-8. New York: 
Academic Press, 1975. 

Broutman, L. J., and R. H. Krock. Modem Composite Materials. Reading, MA: 
Addison-Wesley, 1967. 

Burke, J. Sugaces and Interfaces II. Syracuse, NY: Syracuse University Press, 
1968. 

Calcote, L. R. The Analysis of Laminated Composite Structures. New York: Van 
Nostrand Reinhold Co.. 1969. 
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Carlsson, L. A., and R. B. Pipes. Experimental Characterization of Advanced 
Composite Materials. Englewood Cliffs, NJ: Prentice-Hall, 1987. 

Catherall, J. A. Fibre Reinforcement. London: Mills and Boon Limited, 1973. 
Chawal, K. K. Composite Materials Science and Engineering. New York: Springer- 

Verlag, 1987. 
Christensen, R. M. Mechanics of Composite Materials. New York: John Wiley and 

Sons, 1979. 
Drozda, T. J., ed. Composite Applications: The Future Is Now. Dearborn, MI: 

Society of Manufacturing Engineers, 1989. 
Evans, C. C. Whiskers. London: Mills and Boon Limited, 1972. 
Friedrich, K., ed. Composite Materials Series, Vol. 6, Application of Fracture 

Mechanics to Composite Materials. New York: Elsevier, 1989. 
Garg, S. K., V. Svalbonas, and G. A. Gurtman. Analysis of Structural Composite 

Materials. New York: Marcel Dekker, 1973. 
Gibson, R. F. Principles of Composite Material Mechanics. New York: McGraw- 

Hill, 1994. 
Hearmon, R. F. S. An Introduction to Anisotropic Elasticity. New York: Oxford 

University Press, 1961. 
Holliday, L. Composite Materials. New York: Elsevier, 1966. 
Hollister, G. S., and C. Thomas. Fibre Reinforced Materials. New York: Elsevier, 

1966. 
Hussein, R. M. Composite Panels/Plates. Westport, CT: Technomic, 1986. 
Hyer, M. W. Stress Analysis of Fiber Reinforced Composite Materials. New York: 

McGraw-Hill, 1997. 
Jones, R. M. Mechanics of Composite Materials. New York: Hemisphere Pub- 

lishing, 1975. 
Kelly, A. Strong Solids. Milltown, NJ: Clarendon, 1973. 
Kelly, A., and Y. N. Rabotnov (series eds.). Handbook of Composites, Vol. 3, 

Failure Mechanics of Composites, G. C. Sih and A. M. Skudra, eds. Amster- 
dam: North-Holland, 1985. 

Leknitski, S. G. Theory of Elasticity for an Anisotropic Body. San Francisco: Holden- 
Day, 1963. 

Leknitski, S. G. Anisotropic Plates. Newark, NJ: Gordon & Breach, 1968. 
Lenoe, E., D. Opliner, and J. Burke. Fiberous Composites in Structural Design. 

New York: Plenum, 1980. 
Levitte, A. Whisker Technology. New York: John Wiley and Sons, 1970. 
Lubin, G. Handbook of Fiberglass and Advanced Plastic Composites. New York: 

Van Nostrand Reinhold Co., 1969. 
McCullough, R. L. Concepts of Fiber Resin Composites. New York: Marcel 

Dekker, 197 1. 
Morley, J. High Pegormance Fibre Composites. New York: Academic Press, 1987. 
Nielson, L. E. Mechanical Properties of Polymers and Composites. New York: 

Marcel Dekker, 1974. 
Niranjan, K. N. Woven Fabric Composites. Westport, CT: Technomic, 1993. 
Oleesky, S. S., and J. G. Mohr. Handbook of Reinforced Plastics. New York: Van 

Nostrand Reinhold Co., 1964. 
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Parton, V. Z., and B. A. Kudryavtsev. Engineering Mechanics of Composite Struc- 
tures. Boca Raton, FL: CRC Press, 1993. 

Pendelton, R. L., and M. E. Tuttle, eds. Manual on Experimental Methods for 
Mechanical Testing of Composites. Dearborn, MI: Society for Experimental 
Mechanics, Inc., 1989. 

Plastics and Rubber Institute, London, eds. Carbon Fibers Technology. Uses and 
Properties. Park Ridge, NJ: Noyes Publications, 1986. 

Reddy, J. N. Mechanics of Laminated Composite Plates. Boca Raton, FL: CRC 
Press, Inc., 1997. 

Reddy, J. N. Practical Analysis of Composite Laminates. Boca Raton, FL: CRC 
Press, 1999. 

Richardson, T. Composites: A Design Guide. New York: Industrial Press Inc., 
1987. 

Rogers, C. A., ed. Smart Materials, Structures, and Mathematical Issues. Westport, 
CT: Technomic, 1988. 

Scala, E. Composite Materials for Combined Functions. Rochelle Park, NJ: Hayden 
Book Co., 1973. 

Schwartz, M. M. Composite Materials Handbook. New York: McGraw-Hill, 
1984. 

Sierakowski, R. L., and G. M. Newaz. Damage Tolerance in Advanced Compos- 
ites. Westport, CT: Technomic, 1995. 

Skudra, A. M., A. A. Kruklinsh, and M. R. Gumich. Structural Analysis of 
Composite Beam Systems. Westport, CT: Technomic, 1993. 

Sonneborn, R. H. Fiberglass Reinforced Plastics. New York: Van Nostrand Rein- 
hold Co., 1954. 

Springer, G. S. (ed.). Environmental Effects on Composite Materials. Westport, 
CT: Technomic, 1984. 

Talreja, R. Fatigue of Composite Materials. Westport, CT: Technomic, 1986. 
Tewary, V. K. Mechanics of Fibre Composites. New York: Halsted, 1978. 
Tsai, S. W. Composites Design 1986. Dayton, OH: Think Composites, 1986. 
Tsai, S. W., and H. T. Hahn. Introduction to Composite Materials. Westport, CT: 

Technomic, 1980. 
Tsai, S. W., J. C. Halpin, and N. J. Pagano. Composite Materials Workshop. West- 

port, CT: Technomic, 1968. 
Vinson, J. R., and R. L. Sierakowski. The Behavior of Structures Composed of 

Composite Materials. Dordrecht, The Netherlands: Martinus Nijhoff, 
1986. 
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London: Applied Science, 1975. 
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definition, 198-200, 255, 295 
general use, 203-205, 208-210, 220, 

inversion, 209, 210 
invariants, 257-260 
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252 

Agarwal, B. D., 9, 15, 267, 269, 276, 277, 

Angle-ply laminate, 206, 209, 219-225, 

Anisotropic materials, 4, 26, 29, 32 
Antisymmetric laminate, 205-207, 

Ashby, M. F., 2, 15 
Ashkenazi, E. K., 153, 184 
Azzi, V. D., 184, 211, 274 
Apparent engineering constants, 49, 60, 64, 

229-233, 245-248, 260, 297 

225-229, 259 

119, 120, 128, 294 

Biaxial strain gages, 105- 107, 121 
Bleeder cloth, 12, 298 
Broutman, L. J., 9, 15, 267, 269, 276, 277, 

Buckling, 166-173 
305 

Celanese fixture, 1 16, 117 

124, 138, 153, 184, 276 

266, 273, 300 

of hygral expansion, 31, 32, 64-67, 92, 

Chamis, C. C., 69, 85-88, 91-94, 96, 97, 

Classical lamination theory, 191, 227, 261, 

Coefficients 

93, 130, 203, 204, 210,211, 249 

of mutual influence, 49, 294 
of thermal expansion, 31, 32, 59, 60, 

65-67,91-93, 130, 202, 203, 210, 
211, 213-215, 223, 224, 231, 232, 
235, 236, 238, 244, 247, 248,263, 
264,266 

Compliance matrix, 29, 30, 32, 39, 47, 48 
Composites 
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density, 70, 129 
manufacturing techniques, 10, 12- 14 

Compression testing, 116- 120 
Cowin, S. C., 153, 154, 185 
Cross-ply laminate, 206, 21 1-219, 

Curvature, 193, 194, 202-205, 209-211, 
213, 215, 216, 224, 226, 229, 232, 236, 
264, 265,299 

227-229, 237-245, 248-255, 298 

Delta rosettes, 106- 108 
Displacement field, 18, 21, 52, 192, 227 
Density, 70, 129 

Elastic constants, 10, 38, 39, 47, 49, 86 
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for lamina, 292-295 
for laminates, 295, 296 

52 
Extension-shear coupling, 4, 26, 27, 39, 43, 

Fabrication processes, 10, 12- 14 
Failure theories 

interactive theories, 152- 155 
maximum strain theory, 145, 148, 150, 

maximum stress theory, 144, 146, 151, 
180, 182 
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164, 175, 179, 181, 182, 251, 252, 
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Fiber properties, 10, 86, 93, 134, 135 
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stiffness matrix terms, 40, 43, 44, 46 
strength approximations, 93 -95 
stress-strain relationship, 40, 59, 60, 65 
thermal and hygral behavior, 57 

Laminar hybrid, 261 
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analogy, 272-274 
angle-ply, 206, 209, 219-225, 229-233, 

245-248, 260, 297 
antisymmetric, 205, 207, 225-229, 259 
approximation, 27 1, 272 
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cross-ply, 206, 21 1-219, 227-229, 
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221, 224, 225, 232, 233, 236, 238, 
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Material properties 
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fibers, 10, 86, 93, 134, 135 
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Matrix materials, 3, 7, 8, 300 
Maximum strain criteria, 145, 148, 150, 

180, 182 
Maximum stress criteria, 144, 146, 151, 
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Micromechanics, 8, 69, 300 
Mid-surface strains, 193, 195, 198, 

202-205, 209-211, 213-216, 221, 224, 
229, 232, 236, 237, 241, 244, 247, 250, 
252, 253, 264, 265 

Modulus estimates, 7 1 -90 
advanced considerations, 85-90 
elasticity solutions (with contiguity), 

82 - 84 
Halpin-Tsai equations, 84 
modified approximations, 79, 80 
semiemperical estimates, 8 1, 82 
short fiber composites, 270, 271 
strength of materials estimates, 71 -76 
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60, 65, 66, 202, 203, 210, 215, 217, 
223, 224, 231, 232, 235, 236, 238, 
244, 247, 248, 264, 294 

compliance matrix, 47, 48 
material symmetries, 29 
stiffness matrix, 45 
stress-strain relationship, 43, 45, 60, 65, 

292, 293, 295 
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coordinate system, 17, 42 
coefficients of hygral expansion, 31, 32, 

64, 211 
coefficients of thermal expansion, 3 1, 

32, 60, 211 
compliance matrix, 47 
material symmetries, 29 
stiffness matrix, 40, 44 
stress-strain relationship, 40, 59, 60, 65, 

293, 295 
Orthotropic material, 4, 27, 29, 301 

compliance matrix, 47 
stiffness matrix, 40, 43 
stress-strain relationship, 40, 45, 59, 60, 

65 

Pagano, N. J., 45, 142, 184, 255, 267, 271, 
272, 276 

Particulate composites, 5, 6 
Plane stress, 45, 60, 65 
Ply degredation, 239, 240, 242, 247 
Poisson's ratio, 38-41, 104, 119 
Post-first-ply-failure analysis, 239, 242 
Principal fiber direction, 37 
Predictions of elastic moduli, 71 -90 
Pre-preg, 12, 301 

Quasi-isotropic laminate, 207, 208, 301 

Rectangular rosettes, 106, 108, 121, 123 
Radius of curvature, 193 
Reduced stiffness matrix, 44, 45 
Reinforcements, 6 
Resultant shear force, 196, 197, 199 
Richardson, T., 7, 10, 13, 15, 307 
Rule of mixtures, 73, 75, 76 

Shear modulus tests, 120- 127 
Shear-rail test, 122, 123 
Short fiber composites, 266-274 
Sierakowski, R. L., 11, 15, 138, 274, 307 
Stiffness matrix, 25, 27, 28, 40, 43, 44 
Strain 

definition, 19, 20, 31 
displacement relation for CLT, 193 
hygral, 31, 64 
thermal, 3 1, 59 
transformations, 22, 23, 42, 59, 291, 292 
variation through a laminate, 193, 195, 

216, 218, 229, 232, 236, 265, 296 
Strain gages 

data interpretation, 102- 107 
misalignment, 107 
reinforcing effects, 11 1 - 113 

Strain-stress relationships, 32, 38, 47, 50, 
293, 295 

Strength 
approximations for lamina, 93-95 
coefficients (parameters), 153 - 155, 

160-162, 182, 183 
of constituents, 94 
ratio, 156, 165, 251 
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transformations, 25, 42, 144, 146, 149, 

150, 221, 290, 292 
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