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PREFACE

The various composite materials texts that have been published present topics from
either a materials science or applied mechanics viewpoint. This text presents the
subject from a mechanics point of view and limits discussions to continuous fiber
composites. Topics are developed at a level suitable for terminal undergraduate
students and beginning graduate students. As a prerequisite, students should have
completed a course in strength of materials. Additionally, they should be familiar
with stress—strain relations for isotropic materials and load—stress relationships.
The philosophy behind this text is that it should be fundamentally simple enough
for a senior undergraduate to understand and apply the concepts forwarded, while
at the same time not too trivial for a beginning graduate student.

The scope of this text is limited to topics associated with the analysis and design
of continuous fiber laminated composite materials. Lamina and laminate anal-
ysis is presented with a blend of theoretical developments and examples. The
analysis of laminated composites relies heavily on concepts developed in under-
graduate statics and mechanics of materials courses. Examples presented in this
text require a understanding of free-body diagrams and analysis techniques intro-
duced in undergraduate mechanics courses. Experimental techniques applicable to
defining the constitutive relationships for orthotropic lamina are presented, as are
failure theories for orthotropic materials.

After establishing the stress—strain relationships, discussing special testing consid-
erations, and covering failure criteria for orthotropic lamina, classical lamination
theory is developed. An attempt has been made to present material in an easy-
to-follow, logical manner. Loading conditions involving mechanical, thermal, and
hygral loads are considered after the effect of each is discussed and developed
independently.

Many of the topics covered in this text are a compilation of the topics covered
in preceding books, such as Primer on Composite Materials: Analysis by Ashton,
Halpin, and Petit; Mechanics of Composite Materials by Jones; Introduction to
Composite Materials by Tsai and Hahn; Experimental Mechanics of Fiber Rein-
Sforced Composite Materials by Whitney, Daniel, and Pipes; and The Behavior of
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Structures Composed of Composite Materials by Vinson and Sierakowski. These
texts served as the foundation upon which this text was developed. The present
text incorporates many of the standard equations and formulations found in the
preceding texts and builds upon them.

I am deeply thankful to Professor H. R. Busby (The Ohio State University)
for his friendship, helpful comments, suggestions, and encouragement during the
preparation of this manuscript. Finally, I wish to thank my wife, Ellen, for her
understanding during the course of this project.
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1

INTRODUCTION TO COMPOSITE
MATERIALS

1.1 Historic and Introductory Comments

In the most general of terms, a composite is a material that consists of two or more
constituent materials or phases. Traditional engineering materials (steel, aluminum,
etc.) contain impurities that can represent different phases of the same material and
fit the broad definition of a composite, but are not considered composites because
the elastic modulus or strength of the impurity phase is nearly identical to that of
the pure material. The definition of a composite material is flexible and can be
augmented to fit specific requirements. In this text a composite material is consid-
ered to be one that contains two or more distinct constituents with significantly
different macroscopic behavior and a distinct interface between each constituent
(on the microscopic level). This includes the continuous fiber laminated compos-
ites of primary concern herein, as well as a variety of composites not specifically
addressed.

Composite materials have been in existence for many centuries. No record exists
as to when people first started using composites. Some of the earliest records of
their use date back to the Egyptians, who are credited with the introduction of
plywood, papier-maché, and the use of straw in mud for strengthening bricks.
Similarly, the ancient Inca and Mayan civilizations used plant fibers to strengthen
bricks and pottery. Swords and armor were plated to add strength in medieval
times. An example is the Samurai sword, which was produced by repeated folding
and reshaping to form a multilayered composite (it is estimated that several million
layers could have been used). Eskimos use moss to strengthen ice in forming
igloos. Similarly, it is not uncommon to find horse hair in plaster for enhanced
strength. The automotive industry introduced large-scale use of composites with the
Chevrolet Corvette. All of these are examples of man-made composite materials.
Bamboo, bone, and celery are examples of cellular composites that exist in nature.
Muscle tissue is a multidirectional fibrous laminate. There are numerous other
examples of both natural and man-made composite materials.
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The structural materials most commonly used in design can be categorized in four
primary groups: metals, polymers, composites, and ceramics. These materials have
been used to various degrees since the beginning of time. Their relative importance
to various societies throughout history has fluctuated. Ashby [1] presents a chrono-
logical variation of the relative importance of each group from 10,000 B.c. and
extrapolates their importance through the year 2020. The information contained
in Ashby’s article has been partially reproduced in Figure 1.1. The importance
of composites has experienced steady growth since about 1960 and is projected
to continue to increase through the next several decades. The relative importance
of each group of materials is not associated with any specific unit of measure
(net tonnage, etc.). As with many advances throughout history, advances in mate-
rial technology (from both manufacturing and analysis viewpoints) typically have
their origins in military applications. Subsequently, this technology filters into the
general population and alters many aspects of society. This has been most recently
seen in the marked increase in relative importance of structural materials such as
composites starting around 1960, when the race for space dominated many aspects
of research and development. Similarly, the Strategic Defense Initiative (SDI)
program in the 1980s prompted increased research activities in the development
of new material systems.

The composites generally used in structural applications are best classified as
high performance. They are typically made from synthetic materials, have high
strength-to-weight ratios, and require controlled manufacturing environments for
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Figure 1.1. Relative importance of material development through history (after
Ashby [1]).
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optimum performance. The aircraft industry uses composites to meet performance
requirements beyond the capabilities of metals. The Boeing 757, for example, uses
approximately 760 ft* of composites in its body and wing components, with an
additional 361 ft3 used in rudder, elevator, edge panels, and tip fairings. An accu-
rate breakdown of specific components and materials can be found in Reinhart [2].
The B-2 bomber contains carbon and glass fibers, epoxy resin matrices, and high-
temperature polyimides as well as other materials in more than 10,000 composite
components. It is considered to be one of the first major steps in making aircraft
structures primary from composites. Composites are also used in race cars, tennis
rackets, golf clubs, and other sports and leisure products. Although composite mate-
rials technology has grown rapidly, it is not fully developed. New combinations
of fiber/resin systems, and even new materials, are constantly being developed.
The best one can hope to do is identify the types of composites that exist through
broad characterizations and classifications.

1.2 Characteristics of a Composite Material

The constituents of a composite are generally arranged so that one or more discon-
tinuous phases are embedded in a continuous phase. The discontinuous phase is
termed the reinforcement and the continuous phase is the matrix. An exception to
this is rubber particles suspended in a rigid rubber matrix, which produces a class
of materials known as rubber-modified polymers. In general the reinforcements
are much stronger and stiffer than the matrix. Both constituents are required, and
each must accomplish specific tasks if the composite is to perform as intended.

A material is generally stronger and stiffer in fiber form than in bulk form. The
number of microscopic flaws that act as fracture initiation sites in bulk materials are
reduced when the material is drawn into a thinner section. In fiber form the material
will typically contain very few microscopic flaws from which cracks may initiate
to produce catastrophic failure. Therefore, the strength of the fiber is greater than
that of the bulk material. Individual fibers are hard to control and form into useable
components. Without a binder material to separate them, they can become knotted,
twisted, and hard to separate. The binder (matrix) material must be continuous and
surround each fiber so that they are kept distinctly separate from adjacent fibers
and the entire material system is easier to handle and work with.

The physical and mechanical properties of composites are dependent on the proper-
ties, geometry, and concentration of the constituents. Increasing the volume content
of reinforcements can increase the strength and stiffness of a composite to a point.
If the volume content of reinforcements is too high there will not be enough
matrix to keep them separate, and they can become tangled. Similarly, the geom-
etry of individual reinforcements and their arrangement within the matrix can affect
the performance of a composite. There are many factors to be considered when
designing with composite materials. The type of reinforcement and matrix, the
geometric arrangement and volume fraction of each constituent, the anticipated
mechanical loads, the operating environment for the composite, etc., must all be
taken into account.
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Analysis of composites subjected to various mechanical, thermal, and hygral condi-
tions is the main thrust of this text. Discussions are limited to continuous fiber
laminated composites. In introductory strength of materials, the constitutive rela-
tionship between stress and strain was established for homogeneous isotropic
materials as Hooke’s law. A composite material is analyzed in a similar manner,
by establishing a constitutive relationship between stress and strain.

Isotropic, homogeneous materials (steel, aluminum, etc.) are assumed to be uniform
throughout and to have the same elastic properties in all directions. Upon applica-
tion of a uniaxial tensile load, an isotropic material deforms in a manner similar to
that indicated in Figure 1.2 (the dashed lines represent the undeformed specimen).
Assuming a unit width and thickness for the specimen, the transverse in-plane and
out-of-plane displacements are the same. Unlike conventional engineering mate-
rials, a composite material is generally nonhomogeneous and does not behave as
an isotropic material. Most composites behave as either anisotropic or orthotropic
materials.

L — —_— e |

i BRI e H_E

—_— — —

Toie — — J t

Isotropic response Anisotropic response Orthotropic response

Figure 1.2. Typical material responses for isotropic, anisotropic, and orthotropic mate-
rials subjected to axial tension.

The material properties of an anisotropic material are different in all directions.
There is typically a coupling of extension and shear deformation under conditions
of uniaxial tension. The response of an anisotropic material subjected to uniaxial
tension is also illustrated in Figure 1.2. There are varying degrees of anisotropic
material behavior, and the actual deformation resulting from applied loads depends
on the material.

The material properties of an orthotropic material are different in three mutually
perpendicular planes, but there is generally no shear—extension coupling as with
an anisotropic material. The transverse in-plane and out-of-plane displacements are
not typically the same, because Poisson’s ratio is different in these two directions.
Figure 1.2 also illustrates orthotropic material response. Although it appears similar
to that of an isotropic material, the magnitudes of the in-plane and out-of-plane
displacements are different.

1.3 Composite Materials Classifications

Composite materials are usually classified according to the type of reinforcement
used. Two broad classes of composites are fibrous and particulate. Each has unique
properties and application potential, and can be subdivided into specific categories
as discussed below.
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Fibrous. A fibrous composite consists of either continuous (long) or chopped
(whiskers) fibers suspended in a matrix material. Both continuous fibers and
whiskers can be identified from a geometric viewpoint:

Continuous Fibers. A continuous fiber is geometrically characterized as having
a very high length-to-diameter ratio. They are generally stronger and stiffer
than bulk material. Fiber diameters generally range between 0.00012 and
0.0074 pin (3-200 pm), depending upon the fiber [3].

Whiskers. A whisker is generally considered to be a short, stubby fiber. It can
be broadly defined as having a length-to-diameter ratio of 5 < [/d < 1000 and
beyond [4]. Whisker diameters generally range between 0.787 and 3937 pin
(0.02-100 pm).

Composites in which the reinforcements are discontinuous fibers or whiskers can be
produced so that the reinforcements have either random or biased orientation. Mate-
rial systems composed of discontinuous reinforcements are considered single layer
composites. The discontinuities can produce a material response that is anisotropic,
but in many instances the random reinforcements produce nearly isotropic compos-
ites. Continuous fiber composites can be either single layer or multilayered. The
single layer continuous fiber composites can be either unidirectional or woven,
and multilayered composites are generally referred to as laminates. The material
response of a continuous fiber composite is generally orthotropic. Schematics of
both types of fibrous composites are shown in Figure 1.3.

o et/

Random fiber Biased fiber Unidirectional Laminated
orientation orientation
Discontinuous fiber composites Continuous fiber composites

Figure 1.3. Schematic representation of fibrous composites.

Particulate. A particulate composite is characterized as being composed of parti-
cles suspended in a matrix. Particles can have virtually any shape, size or config-
uration. Examples of well-known particulate composites are concrete and particle
board. There are two subclasses of particulates: flake and filled/skeletal:

Flake. A flake composite is generally composed of flakes with large ratios of
platform area to thickness, suspended in a matrix material (particle board, for
example).

Filled/Skeletal. A filled/skeletal composite is composed of a continuous skele-
tal matrix filled by a second material: for example, a honeycomb core filled
with an insulating material.
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The response of a particulate composite can be either anisotropic or orthotropic.
Such composites are used for many applications in which strength is not a signifi-
cant component of the design. A schematic of several types of particulate compos-
ites is shown in Figure 1.4.

/
6 %0 96 (S 90 L -4
0000 & (& 2, QO\|/ S e,
P
General particulate Flake Filled/skeletal

Figure 1.4. Schematic representation of particulate composites.

1.4 Fundamental Composite Material Terminology

Some of the more prominent terms used with composite materials are defined
below. A more detailed list can be found in Tsai [5], as well as in the Glossary.

Lamina. A lamina is a flat (or sometimes curved) arrangement of unidirectional
(or woven) fibers suspended in a matrix material. A lamina is generally assumed
to be orthotropic, and its thickness depends on the material from which it is made.
For example, a graphite/epoxy (graphite fibers suspended in an epoxy matrix)
lamina may be on the order of 0.005 in (0.127 mm) thick. For the purpose of
analysis, a lamina is typically modeled as having one layer of fibers through the
thickness. This is only a model and not a true representation of fiber arrangement.
Both unidirectional and woven lamina are schematically shown in Figure 1.5.

oo dcd e dcH

unidirectional woven

Figure 1.5. Schematic representation of unidirectional and woven composite lamina.

Reinforcements. Reinforcements are used to make the composite structure or
component stronger. The most commonly used reinforcements are boron, glass,
graphite (often referred to as simply carbon), and Kevlar, but there are other types
of reinforcements such as alumina, aluminum, silicon carbide, silicon nitride, and
titanium.
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Fibers. Fibers are a special case of reinforcements. They are generally continuous
and have diameters ranging from 120 to 7400 pin (3-200 pm). Fibers are typically
linear elastic or elastic—perfectly plastic and are generally stronger and stiffer than
the same material in bulk form. The most commonly used fibers are boron, glass,
carbon, and Kevlar. Fiber and whisker technology is continuously changing [3, 4, 6].

Matrix. The matrix is the binder material that supports, separates, and protects
the fibers. It provides a path by which load is both transferred to the fibers and
redistributed among the fibers in the event of fiber breakage. The matrix typically
has a lower density, stiffness, and strength than the fibers. Matrices can be brittle,
ductile, elastic, or plastic. They can have either linear or nonlinear stress—strain
behavior. In addition, the matrix material must be capable of being forced around
the reinforcement during some stage in the manufacture of the composite. Fibers
must often be chemically treated to ensure proper adhesion to the matrix. The most
commonly used matrices are carbon, ceramic, glass, metal, and polymeric. Each
has special appeal and usefulness, as well as limitations. Richardson [7] presents
a comprehensive discussion of matrices, which guided the following presentation.

1. Carbon Matrix. A carbon matrix has a high heat capacity per unit weight. They
have been used as rocket nozzles, ablative shields for reentry vehicles, and
clutch and brake pads for aircraft.

2. Ceramic Matrix. A ceramic matrix is usually brittle. Carbon, ceramic, metal,
and glass fibers are typically used with ceramic matrices in areas where extreme
environments (high temperatures, etc.) are anticipated.

3. Glass Matrix. Glass and glass-ceramic composites usually have an elastic
modulus much lower than that of the reinforcement. Carbon and metal oxide
fibers are the most common reinforcements with glass matrix composites.
The best characteristics of glass or ceramic matrix composites is their
strength at high service temperatures. The primary applications of glass matrix
composites are for heat-resistant parts in engines, exhaust systems, and electrical
components.

4. Metal Matrix. A metal matrix is especially good for high-temperature use in
oxidizing environments. The most commonly used metals are iron, nickel, tung-
sten, titanium, magnesium, and aluminum. There are three classes of metal
matrix composites:

Class I. The reinforcement and matrix are insoluble (there is little chance
that degradation will affect service life of the part). Reinforcement/matrix
combinations in this class include tungsten or alumina/copper, BN-coated B
or boron/aluminum, and boron/magnesium.

Class II. The reinforcement/matrix exhibit some solubility (generally over a
period of time and during processing) and the interaction will alter the phys-
ical properties of the composite. Reinforcement/matrix combinations included
in this class are carbon or tungsten/nickel, tungsten/columbium, and tung-
sten/copper(chromium).

Class 111. The most critical situations in terms of matrix and reinforcement are
in this class. The problems encountered here are generally of a manufacturing
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nature and can be solved through processing controls. Within this class the
reinforcement/matrix combinations include alumina or boron or silicon carbide/
titanium, carbon or silica/aluminum, and tungsten/copper(titanium).

5. Polymer Matrix. Polymeric matrices are the most common and least expensive.
They are found in nature as amber, pitch, and resin. Some of the earliest
composites were layers of fiber, cloth, and pitch. Polymers are easy to
process, offer good mechanical properties, generally wet reinforcements well,
and provide good adhesion. They are a low-density material. Because of
low processing temperatures, many organic reinforcements can be used. A
typical polymeric matrix is either viscoelastic or viscoplastic, meaning it
is affected by time, temperature, and moisture. The terms thermoset and
thermoplastic are often used to identify a special property of many polymeric
matrices.

Thermoplastic. A thermoplastic matrix has polymer chains that are not cross-
linked. Although the chains can be in contact, they are not linked to each
other. A thermoplastic can be remolded to a new shape when it is heated to
approximately the same temperature at which it was formed.

Thermoset. A thermoset matrix has highly cross-linked polymer chains. A
thermoset can not be remolded after it has been processed. Thermoset matrices
are sometimes used at higher temperatures for composite applications.

Laminate. A laminate is a stack of lamina, as illustrated in Figure 1.6, oriented in
a specific manner to achieve a desired result. Individual lamina are bonded together
by a curing procedure that depends on the material system used. The mechanical
response of a laminate is different from that of the individual lamina that form it.
The laminate’s response depends on the properties of each lamina, as well as the
order in which the lamina are stacked.

Figure 1.6. Schematic of a laminated composite.

Micromechanics. A specialized area of composites involving a study of the inter-
action of constituent materials on the microscopic level. This study is gener-
ally conducted by use of a mathematical model describing the response of each
constituent material.

Macromechanics. A study of the overall response of a lamina (or laminate) in
which the effects of constituent materials are averaged to achieve an apparent
response on the macroscopic level.
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1.5 Advantages Afforded by Composite Materials

Materials are often expected to perform multiple tasks. An example is a smart mate-
rial, in which sensors embedded in the material are used to determine conditions
within the material. The use of an embedded sensor to define real-time conditions
in a structure is beneficial in predicting critical component life, or identifying
when preassigned parameters reach a critical stage and require specific action.
One approach to developing smart structures is to use fiber optics embedded in a
composite. They can be directly embedded into the structure during manufacture
and are somewhat protected from damage. The general nature of a smart struc-
ture raises issues not generally considered with conventional laminates. Journal
articles, conference proceedings, and books dedicated to smart structures are
available [8].

Composites offer a wide range of characteristics suitable for many design require-
ments. The apparent elastic modulus and tensile strength for several types of fibers
shown in Table 1.1 indicates a wide range of possible material responses, which
can be altered by changing the procedure used to develop each fiber. Of the fiber
properties shown, carbon offers the most variety. Agarwal and Broutman [9] identi-
fied a total of 38 carbon fibers with elastic moduli and strength ranges of 4 x 10% —
88 x 10° psi (28—607 GPa) and 140-450 ksi (966—3105 MPa), respectively, in
1980. By 1986, there were 17 worldwide manufacturers producing 74 different
grades of high-modulus carbon fibers, according to the Plastics and Rubber Insti-
tute [6]. The growth in carbon fiber use is illustrated in Figure 1.7 for aerospace,
sports, and “other” areas starting in 1977 and extrapolated to 1998 [10].
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£ 60k Sports 3 £ 4000 »

g 40 1 2 3
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1977 1983 1989 1995 1977 1983 1989 1995

Year Year

Figure 1.7. Worldwide usage of carbon fibers from 1977 to 1998.

The high elastic modulus and strength in Table 1.1 do not reveal the actual behavior
of a composite once the fibers have been suspended in a matrix. The properties of
the matrix also contribute to the strength and stiffness of the material system. Since
the matrix is generally much weaker and less stiff than the fiber, the composite will
not be as strong or stiff as the fibers themselves. In addition, the properties cited in
the table refer only to the fiber direction. In a composite there are three directions
to consider: one parallel to the fibers (longitudinal direction) and two perpendicular
to the fibers (transverse directions). The properties in the longitudinal direction are
superior to those in the transverse directions, in which the matrix is the dominant
constituent.



Www.iran—-mav ad.com

10 Laminar Composites oo -\ _oipe g o\Lomiils s>y

Table 1.1. Apparent elastic modulus and strength of selected fibers (from [4], [9]).

Fiber Tensile Modulus Tensile Strength
Msi (GPa) ksi (MPa)
Berylium 35 (240) 189 (1300)
Boron 56 (385) 405 (2800)
Carbon: High tenacity, 10.2-87.5 (70-600) 254-509 (1750-3500)
high modulus
PAN (Polyacrylonitrite) 29.2-56.9 (200-390) 305-494 (2100-3400)
Pitch (mesophase) 24.8-100.6 (170-690) 189-349 (1300-2400)
Glass: E-Glass 10.5 (72.4) 508 (3500)
S-Glass 12.4 (85.5) 68 (4600)
M-Glass 15.9 (110) 508 (3500)
Kevlar-29 8.6 (59) 384 (2640)
Kevlar-49 18.9 (128) 406 (2800)
Silica 16.5 (72.4) 482 (5800)
Tungsten 60 (414) 610 (4200)

Composites are attractive for many design considerations. Since the fiber direction
can be altered throughout the thickness of a laminate, a component’s response can
be tailored to fit specific requirements. Designing a component with a zero coeffi-
cient of thermal expansion can be an important consideration for space applications
where one side of a structure can be exposed to extremely high temperatures while
the other side experiences extremely low temperatures.

A composite offers strength-to-weight and stiffness-to-weight ratios superior to
those of conventional materials. Figure 1.8 illustrates this for several composite
material systems in terms of strength and stiffness, respectively. As seen in these
figures, a wide range of specific strength (o,/p) and specific modulus are (E/p)
available. In some instances strength may be a primary consideration, while in
others the stiffness is more important. In all cases shown the specific strength for
the composite material systems is better than that for the conventional materials,
whereas the specific modulus is not always superior.

Composites offer better structural response characteristics, but they are expensive.
Both the raw material and many manufacturing techniques used with compos-
ites are more expensive than for conventional materials. There are many possible
uses for composites not discussed herein. A sampling of current applications and
techniques ranging from automotive parts to orthopedic applications is found in
Drozda [10].

1.6 Selected Manufacturing Techniques for Composites

There are many manufacturing, fabricating, processing, and forming processes
for composites. According to Richardson [7], there are seven major processes
by which polymer matrix composites are formed: (1) molding, (2) casting,
(3) thermoforming, (4) expansion, (5) coating, (6) fabrication, and (7) radiation.
Within each of these processes different techniques can be used. For example, in
the category of molding, there are 9 subprocesses containing 16 subsets:
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Figure 1.8. Specific strength and stiffness comparison for selected composites and
conventional bulk materials.

Injection

Coinjection

Reaction Injection

Compression

Caldenering

Blow (extrusion-blow molding, injection-blow molding, stretch-blow molding,
multilayer-blow molding)

Extrusion

Laminating

Reinforcing (match-die molding, hand lay-up, spray-up molding, vacuum bag
molding, filament winding, continuous reinforcing, cold molding, cold forming/
stamping, sintering, liquid-resin molding, vacuum-injection molding, thermal ex-
pansion resin transfer)

The other major processes for forming composites also contain subprocesses. The
process selected for the production of a component depends on many variables and
can influence the final product. Continuous fiber composites can be processed in
various manners. The technique used depends to a large extent on the type of matrix
used. Some techniques for polymer matrix composites are not appropriate for
metal, ceramic, or thermoplastic matrix composites. Vinson and Sierakowski [11]
present some of the primary techniques for processing metal and nonmetal matrix
as well as short fiber composites. Table 1.2 provides a synopsis of some procedures
applicable to continuous fiber composites, arranged according to the type of matrix.
The diverse nature of composite material systems dictates that no single procedure
can be applied to all composites. The discussions in this section are limited to
selected procedures for continuous fiber polymer matrix composites. Discussions
of fabrication processes for metal matrix, ceramic matrix, and thermoplastic matrix
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composites can be found in other references [2, 12—16]. Similarly, sheet-molding

compounds (SMC) and bulk-molding compounds (BMC), which are composed of
chopped fibers, are not addressed herein.

Table 1.2. Common fabrication and curing processes for continuous
Jiber laminated composite materials (from [11]).

Processing Nonmetal Matrix Metal Matrix
Technique Compesites Composites

Hand lay-up

Vacuum bag/autoclave
Matched die molding
Filament winding
Pressure & roll bonding
Plasma spraying
Powder metallurgy
Liquid infiltration
Coextrusion

Controlled solidification
Rotational molding
Pultrusion

Injection molding
Centrifugal casting
Pneumatic impaction
Thermoplastic molding
Resin transfer molding (RTM)

P M
el R e i

>

The matrix of a polymeric composite can be either a thermoplastic or a thermoset.
Both types are genmerally available as a pre-preg tape, which means the fibers
have been precoated with the resin and arranged on a backing sheet in either
unidirectional or woven configurations. A thermoset must be stored in a refriger-
ation system since the resin is partially cured, and exposure to room temperature
for extended periods can complete the curing process. A thermoplastic may be
stored at room temperature until the matrix is melted during the final stages of
processing. Pre-preg tape allows fabricators flexibility, because it eliminates the
concern of mixing resin components in the correct proportions and subsequently
combining resin and fiber.

Continuous fiber polymer matrix composites are most effectively cured at elevated
temperatures and pressures. Prior to the final cure procedure, the fiber arrangement
through the thickness of the composite must be defined using either pre-preg tape
or individual fibers coated with resin. Two approaches for doing this are hand
lay-up and filament winding. Hand lay-up is generally used for sample preparation
in laboratory applications involving pre-preg tape. It is also used in areas where a
tailored laminate is required. In the aircraft industry it is not uncommon for several
plies to be built up or dropped off in specific areas of a large structural component
where strength or stiffness requirements vary. The hand lay-up procedure consists
of using a pre-preg tape or woven mat to individually position each ply. In some
applications the woven mat form of composite is placed directly into a mold and
coated with resin prior to curing. In using this procedure a bleeder cloth should
be used to absorb any extra resin that may be squeezed from the component when
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pressure is applied during the cure procedure. In the case of a neat resin system
a breather (without a bleeder) is used. In addition, a peel-ply or mold release
agent that allows for easy removal of the specimen after curing is needed. After
the laminate is layed-up, it is cured (generally using an autoclave or lamination
press).

Filament winding is perhaps the oldest fabrication procedure used for continuous
fiber composites. Either individual fibers or tapes may be used with this process.
A schematic of a generalized winding system for individual fibers is shown in
Figure 1.9. The fiber is initially placed on a spool and fed through a resin bath.
The resin-impregnated fiber is then passed through a feeder arm that is free to
move at various speeds in the transverse direction. The fiber is then wound onto a
mandrel (or a form, which in general is removed after forming is complete). The
mandrel is turned by a lathe at a specified rate. The lathe may also be rotated as
indicated in Figure 1.9. By controlling both the feeding and rotational rates, various
ply orientations can be achieved. Specific names are given to the type of winding
associated with different operating speeds (vy, v, w;, ;) of the systems compo-
nents. Table 1.3 identifies each type of winding and indicates which combinations
of angular and linear velocity produce them (note that an entry of O implies no
motion). By proper control of the motion parameters a filament-wound vessel can
contain helical, circumferential, and polar windings, each illustrated in Figure 1.10.
Braid-wrap and loop-wrap windings are also possible, but cannot be achieved using
the system shown in Figure 1.9. Winding procedures involving pre-preg tapes are
also possible. Examples of continuous helical, normal-axial, and rotating mandrel
wraps are presented in Richardson [7]. After winding is complete the part is cured.
Pressure vessels, rocket motor cases, power transmission shafts, and chemical tanks
are well suited for filament winding.

mandrel
0y
teed resin bath
eeger afm ;71
Wy /_
v -—— —_——
1

Vo

spool

Figure 1.9. Schematic of a generalized filament winding operation.

After lay-up, polymer matrix composites must be cured using specified combi-
nations of temperature and pressure. The most commonly recommended curing
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circumferential
windings

helical
windings

polar
windings

Figure 1.10. Polar, circumferential, and helical windings.

Table 1.3. Basic filament winding patterns as a func-
tion of winding system motions defined in Figure 1.9.

Pattern Type \21 v2 wy w2
Helical wind X X X 0
Circumferential wind X 0 X 0
Polar wind 0 0 X X

procedures are a vacuum bag, autoclave, or lamination press. In the vacuum bag
procedure, first the specimen is layed-up, then peel and bleeder (or breather) plies
are placed around the specimen and the entire unit is placed on a tool plate. A
boundary support (or dam) is placed around the periphery of the specimen, and a
pressure plate is placed over the specimen. The pressure bag is then sealed around
the tool plate. A vacuum is drawn and the specimen is cured. A schematic of the
pressure bag assembly is shown in Figure 1.11. An autoclave curing procedure is
somewhat different, since the autoclave can serve for temperature control as well
as creating a vacuum. An autoclave cure often uses a vacuum bag as well.

vacuum bag ——— bleeder cloth ﬁ

specimen

dam

seal | |

Figure 1.11. Vacuum bag method.

(7777777777777 7777777777777
tool (mold) plate <

During the final cure process, temperature and pressure must be controlled for spec-
ified time periods and at specified rates. A schematic of a cure cycle is presented
in Figure 1.12. The specifications of temperature pressure are typically defined by
the material manufacturers. Failure to follow recommended procedures can result
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temperature

|<——- pressure

Temperature
and
pressure

time

Figure 1.12. Pressure-temperature-time relations for a possible cure cycle.

in composites that are not structurally adequate. They may contain an unacceptable
number of voids, or regions in which intraply adhesion is weak.

Many other processing methods for composite materials could be discussed. The
ones presented herein illustrate some of the procedures applicable to continuous
fiber laminated composites. Other composite material systems require different
processing methods.
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A REVIEW OF STRESS, STRAIN, AND
MATERIAL BEHAVIOR

2.1 Introduction

In developing methodologies for the analysis and design of laminated composite
materials a consistent nomenclature is required. Stress and strain are presented
in terms of Cartesian coordinates for two reasons: (1) continuity with develop-
ments in undergraduate strength of materials courses, and (2) simplification of the
analysis procedures involving thermal and hygral effects as well as the general
form of the load—strain relationships. A shorthand notation (termed contracted)
is used to identify stresses and strains. The coordinate axes are an x—y—z system
or a numerical system of 1-2-3. The 1-2-3 system is termed the material, or
on-axis, system. Figure 2.1 shows the relationship between the x—y—z and 1-2-3
coordinate systems. All rotations of coordinate axes are assuumed to be about the
z-axis, so z is coincident with the 3-direction, which is consistent with the assump-
tion that individual lamina are modeled as orthotropic materials. The notational
relationship between the Cartesian, tensor, material, and contracted stresses and
strains is presented below for the special case when the x, y, and z axes coincide
with the 1, 2, and 3 axes.

Cartesian Tensor Material Contracted
Oy — & Oxx — Exx oy — & o1 — &
Oy — &y Oyy — Eyy gy — & 0y — &
0, — & Oz — €72 03 — &3 03 — &3
Tyz — Vyz Oy; — 26‘yz 723 — V23 04 — &4
Txz — Vxz Oxy — 28y, T3 — Y13 05 — &5
Txy — Vxy Oxy — 28xy T12 — Y12 O — &6

2.2 Strain-Displacement Relations

When external forces are applied to an elastic body, material points within the
body are displaced. If this results in a change in distance between two or more

17
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Figure 2.1. Cartesian and material coordinate axes.

of these points, a deformation exists. A displacement which does not result in
distance changes between any two material points is termed a rigid body trans-
lation or rotation. The displacement fields for an elastic body can be denoted
by U(x, y,2,1), V(x, y,2,t), and W(x, y, z,t), where U, V, and W represent the
displacements in the x, y, and z directions, respectively, and ¢ represents time.
For our discussions only static analysis is considered and time is eliminated from
the displacement fields. The displacement fields are denoted simply as U, V, and
W. For many cases of practical interest these reduce to planar (two-dimensional)
fields.

Assume two adjacent material points A and B in Figure 2.2 are initially a distance
dx apart. Assume line AB is parallel to the x-axis and displacements take place
in the x—y plane. Upon application of a load, the two points are displaced and
occupy new positions denoted as A’ and B’. The change in length of dx is denoted
as dL and is expressed as

auw \? [av  \?
dL=\/(dx+—dx> +(—dx>
ax ax

U U\ ? av\?2
- 22~ = — )4
\/(” ax>+(ax> +<ax) *

Figure 2.2. Displacement of material points A and B.
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Assuming dU/dx < 1 and 3V/dx < 1, the terms (3U/dx)* and (3V/dx)* are
considered to be zero and the expression for dL becomes

/ U
dL=4/14+2—dx
0x

Expanding this in a binomial series, dL = [1 + dU/ax + h.o.t]dx. The higher
order terms (h.o.t.) are neglected since they are small. The normal strain in the
x-direction is defined as ¢, = (dL — dx)/dx . Substituting dL =[1 40U /ox +
h.o.t.]dx, the strain in the x-direction is defined. This approach can be extended
to include the y- and z-directions. The resulting relationships are
oU v oW

= ox &= dy 2= az
Shear strain is associated with a net change in right angles of a representative
volume element (RVE). The deformation associated with a positive shear is shown
in Figure 2.3 for pure shear in the x—y plane. Material points O, A, B, and
C deform to O', A’, B/, and C' as shown. Since a condition of pure shear is
assumed, the original lengths dx and dy are unchanged. Therefore, dU/ox = 0
and 3V /0y = 0, and the angles 6,, and 6,, can be defined from the trigonometric
relationships

@V/ox)ydx .~ (3U/dy)dy
Tax " T dy

sinfy, = Oy =

dy

¥l

1

Figure 2.3. Deformation under conditions of positive pure shear.

Small deformations are assumed so approximations of sin,, ~ 6,, and sin6,, ~
)y are used. The shear strain in the x—y plane is defined as

v BU

Vo =by =5 b=+
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where ¢ represents the angle between two originally orthogonal sides after defor-
mation. For a negative shear strain the angle ¢ increases. Similar expressions can
be established for the x—z and y—z planes. The relationships between shear strain
and displacement are

_W W W W
WES T TR T TR Ty

These are the Cartesian representations of shear strains and are related to the tensor
form by vy = 264y, Vie = 284, and y,, = 2¢,,. The 2 in this relationship can make
the tensor form of laminate analysis complicated, especiaily when thermal and
hygral effects are considered.

Since strain is directly related to displacement, it is possible to establish the
displacement fields U, V, and W from a strain field. For a displacement field
to be valid it must satisfy a set of equations known as the compatibility equa-
tions. These equations are generally expressed in terms of either strain or stress
components. The compatibility equations ensure that the displacement fields will be
single-valued functions of the coordinates when evaluated by integrating displace-
ment gradients along any path in the region. The equations of compatibility can
be found in numerous texts on elasticity, such as [1]. The strain component form
of the constitutive equations is

Pry _Pe e, P 3 (_ay_ﬂ+ e %)

oxdy - ayr  ox? 9ydz  ox ox ay 74
Bre_Pe Pe Py 0 (e b i)
dydz 92 3y? axdz dy \ dy dz
Py, _ 92_85 3_281 2.92@Z _2 (Q_y_yz_ + e ayxy)
oxdz  x2 92 axdy 9z \ o ay 0z

Each strain component is defined in terms of a displacement; therefore, these
equations can be expressed in terms of displacements. In addition, the constitutive
relationship (relating stress to strain) can be used to express these equations in
terms of stress components.

Example 2.1. Assume the only nonzero strains are &, = 10 pin/in, £y = —2 pin/in,
and y;, = 5 pinfin. The displacement fields U/ and V will be functions of x and y
only. In the z-direction the displacement field will be W = 0. From the definitions
of axial strain,

U=/exdx=10x+A V=/sydy=—2y+B

where A and B are constants of integration. From the definition of shear strain,

_S_BU 6V__6A+BB
Yoy = T 9y ax 9y &
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Therefore, A and B must be functions of y and x, respectively. Otherwise, a shear
strain would not exist. These functions can be arbitrarily expressed as A(y) = C; +
Cyy and B(x) = C3 + Cyx. After differentiation, y,y, = 5 = C + C4. Therefore,
U=10x+C;+ Cry and V = -2y + C3 + Cyx. Constants C; and C; are rigid
body translations. For conditions of equilibrium, rigid body translations vanish;
therefore, C; = C3 = 0. Similarly, rigid body rotations are not allowed; therefore,

U v Yy
ay ox = &2 4 2

The displacement field can thus be established as
U=(10x+25y)puin V = (—2y+ 2.5x) pin

These displacement fields can easily be checked to see that the compatibility
requirements are satisfied. Since W = 0 and U and V are only functions of x and
Y, it is easy to establish, through the definitions of strain that ¢, = y); = ¥, = 0.
Since the in-plane strains (e, &y, ¥xy) are constant, the compatibility conditions
are satisfied.

Sometimes it is convenient to use the strain—displacement definition from under-
graduate strength, ¢ = AL/L, instead of &, = dU/dx. Similarly, shear strains can
be established using the small-angle approximations to define changes with respect
to both the x- and y-axes.

Example 2.2. Assume the two-dimensional solid shape shown is deformed as illus-
trated by the dashed lines in Figure E2.2.

Yy A
| oo
" g
k . [
0.036 / |
Br—f |
/ /
3.00" |/ [
L I R
. 10.010"

L—ZO"—L—O.OQO"J * X

Figure E2.2.

Since the x-displacement of point A is 0.020 in, and the y-displacement of point
B is 0.036 in, the normal strains in x and y are

Ax o 0.02 Ay 0.036
ax 00 0010 s, =22 2290 b0
x 20 =57 30

Ex =
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The shear strain is defined from identifying 8,, and 6,, using small-angle approxi-
mations as shown in Figure 2.3. Therefore,
0.012 0.010
Oy = ——=0.004 6,,=—— =0.005
30 Y720
The shear strain is y,y = 6y, + 6, = 0.005 + 0.004 = 0.009. Had the original right
angle between lines OA and OB been increased instead of decreased, the shear
strain would be negative as per the definitions of positive and negative shear strain.

2.2.1 Strain Transformations

Consider the undeformed two-dimensional triangle ABC shown in Figure 2.4.
Assume that the triangle is subjected to a pure shear deformation, so points A, B,
and C occupy positions A’, B’, and C’ in the deformed state. The deformed length
of dL, denoted as dL’, is

U au | \* v v o \?
dL = dx+ —dx— —dy} +|dy+ —dy— —dx
ay ay ax

ox
oU v 1% oUu
Recall that ¢, = 5 o= 3’ O = s Ory = o' and note that
i (dx)’ 2 dy)* . @dx)@dy)
$in“f = —————— €05’ = ——5——— sinfcosf = —s———
(dx)? + (dyy (dx)* + (dy)? (@dx)* + (dy)?

Using these terms in the expression for d1’, expanding the equation, and neglecting
higher order terms such as si and &,y yields

dL = \/1 + 2¢,sin® 6 + 2e,c0s28 — 2y,y sinfcosfdL

YA 0

el

ouU oV
+= dy}, [dy+v+—-- d }
ay ay

B' [[dx+ U+a—U dxMV+ ﬂdx]
ox Ix

C(0,dy) A'(UV)

dL
dy

-
o

A(0,0) B(dx,0) X

Figure 2.4. Geometry and coordinate changes for pure shear deformation.
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This expression shows that the change in length of the original line dL (for a pure
shear deformation) includes extensional terms such as ¢, and ¢,. The normal strain
in the y’-direction (indicated in Figure 2.4) is
dL' —dL

dL

Following the same procedure as for the normal strain (expanding in a binomial
series) yields &y = g, sin® 0 + &y cos’ 6 — Yxysinfcosf. Similar expressions can
be established for £, and y,, . Rotations in the x and y directions cause deforma-
tions in other directions. The strain transformation relating strains in the primed

and unprimed systems is
Ey Ex
{ Ey } = [T.]§ &y
Vxy Vxy

Ey =

where
m? n? mn
[T)=| n? m? —mn 2.1)
—2mn 2mn m?—n?
and

m=cosf, n =sin6

This transformation can be extended to three dimensions to include ¢, y,;, and
¥y, Assuming a rotation about the z-axis only,

Ex [ m? n2 0 0 0 mn | &
Ey n? m? 0O O —mn £y
e\ _| o 0 1 0 O 0 &,
ve (] 0 0 0m —n 0 Vi (2:2)
yxz’ O 0 0 n m 0 y_xz
Yy  —2mn 2mn 0 0 0 m*—n?| { vy

If arbitrary rotations about any axis are allowed, a different transformation results.
This representation is described by a more general set of transformation equations
as presented in Appendix B, and in various texts, including Boresi and Lynn [2]
and Dally and Riley [3]. If the tensor form of shear strain is used, mn becomes
2mn, and 2mn becomes mn, Since Yy, = 2¢y,.

2.3 Stress and Stress Transformations

The positive sign convention used for stresses is shown on the three-dimensional
representative volume element (RVE) in Figure 2.5. In this element it is assumed
that the conditions of equilibrium have been satisfied (with 7, = —1,,, etc.). Stress
components on the hidden faces exist, but are not shown.

For simplicity, consider the transformation of the state of stress shown in Figure 2.6
from the x~y system to the x'—y’ system. The transformations are established by
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Figure 2.5, Positive sign convention for a 3-D state of stress.

Figure 2.6. Transformation of stresses from an X -Y to an X'~Y' coordinate system.

assuming the element has a unit thickness ¢, and summing forces on the free body
diagram representing the exposed x’ plane. The summation of forces in x’ yields

> Fy = 0y (tdl) — ox(tdy) cos 6 — o, (tdx) sin 6
— Tey(tdx)cos 8 — T, (td y)sinf = 0

Using the notation m = cos6 = (dy/dl) and n = siné = (dx/dl), it is a simple
matter to show

oy = oym® + ayn2 + 21, ymn

Similar procedures can be followed by drawing a free-body diagram exposing
the normal stress in the y’-direction in order to establish the complete set of
transformation equations of stress from an x—y coordinate system to an x'—y’
system. The general form of this transformation is

Oy Ox
{ Uy/ } B [TU] { ay }
Toy Ty
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where
m? n? 2mn
(Tol=| n? m*> —2mn (2.3)
—mn mn m?—n?
In three dimensions, the transformation from an x—y system to an x'—y’ system
(assuming all rotations to be about the z-axis only) is

O m* n* 0 0 0 2mn | {ox
Oy n2 m* 0 0 0 —2mn Oy
oy 0 0 1 0 O 0 o,

= 24
Tyy 0 0O 0 m —n (4 Tyz @4
(274 0 0 0 n m 0 Txz
Tay | —mn mn 0 0 0 m’—-n?| (T

A more populated transformation matrix exists if arbitrary rotations are allowed.
The fundamental assumptions from which simple lamination theory is developed
depend on rotations about the z-axis only. It should be noted that if the tensor
notation is being used for strains, then the strain and stress transformations are
related by [T.] = [T,].

2.4 Stress-Strain Relationships

The generalized form of Hooke’s law relating stress to strain is {o} = [C]{¢}, where
[C] is a 6 x 6 stiffness matrix. The coefficients of [C] are generally not constants.
They depend on location within an elastic body, as well as time and temperature.
The relationship between stress and strain through [C] is an approximation which
is valid for small strains. For a homogeneous, linearly elastic material, the material
properties are assumed to be the same at every point within the material, and the
strain energy density (Up) is equal to the complementary internal-energy density,
or complementary strain energy density (Cyp). Through the use of energy methods
(formulated from considerations based on the first law of thermodynamics), the
strain energy density can be related to the stress and a subsequent stress—strain
relationship [2]. The relationship between Uy and C for a linearly elastic material
is shown in Figure 2.7. The complementary strain energy concept which relates Uy
to Cp is generally used to relate stress to strain through the stiffness matrix [C].
In addition, using energy methods, it can be shown that {C] is symmetric, and
the terms within it are related by c;; = cj;. Therefore, 21 independent elastic
constants must be determined. The entire stiffness matrix, however, contains 36
nonzero terms. Using contracted notation, the generalized form of the stress—strain
relationship for an anisotropic material is

o1 Cii Ciz Ci3 Cup Cis5 Cys £
lop) Ciz Cxn Cp Cy Cr Cy £2
o3 | _|Ci3s Cxn C33 C3s C35 Cy €3
04 [T |Cis Cra Czs Cay Css Caus £4
Os Cis Cyps Cis Cys Css Csg €5

O¢ Cis Cap C3¢ Cs Css Ces &6
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Figure 2.7. Relationship between Uy and C, for linear material behavior.

The stiffness matrix {C] can be shown to be invariant. In addition to being termed
anisotropic, this type of material behavior is also termed triclinic. This relation-
ship does not distinguish between tensile and compressive behavior. The material
is assumed to have the same stiffness in tension and compression. The response
characteristics of this material, as defined by [C], show that shear and exten-
sion are coupled. This means that even under conditions of uniaxial tension, a
shear deformation will develop. In a similar manner, a pure shear load will create
normal deformations. Characterization of an anisotropic material is difficult from

an experimental viewpoint, since 21 independent elastic constants must be deter-
mined.

2.4.1 Monoclinic Materials

If any material symmetry exists, the number of terms in [C] reduce. Assume, for
example, that the x~y (or z = 0) plane is a plane of material symmetry. The effect
of this symmetry on the stresses and strains is seen by allowing a rotation of 180°
from the x~y coordinate system to the x’—y’ coordinate system as depicted in
Figure 2.8. Using the strain and stress transformation equations given by (2.2) and
(2.4), the primed and unprimed stresses and strains are related by

Oy Oy Ex Ex
oy Oy Ey £y
Oy _ o, Ey _ £,
Ty —Ty; 14%4 ~Vx
Txz —Tx 1274 ~Vxz
Txy Txy VYxy' Yxy

Figure 2.8. Plane of material symmetry for a monoclinic material.
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Consider the o, and o, stress components. Using the general constitutive relation-
ship for an anisotropic material, the stress in the primed and unprimed systems are

oy = C11&x + Craey + C136y + Cra¥yy + Cis¥ae + Cr6¥ay
0y = C11&8x + C126y + C138; — Cra¥y, — Ci5¥ae + Cr6Vay

In order for [C] to be invariant, these two equations must be equal, which
can happen only if C4 = Cys = 0. Similar procedures can be followed for the
remaining stress components in both the primed and unprimed systems, which
results in Cpy = Cy5 = C34 = C35 = C46 = Cs¢ = 0. The stiffness matrix reduces
to 13 independent elastic constants and is

[C,y Cp Ci3 O 0 Cis|
Cia Cn Cxn 0 0 Cyx
Ci Cxp Ciz O 0 Cs
0 0 0 Cyu Cs5 O

0 0 0 Cs5 Css O
[Ci6 C6 C36 O 0 Ce |

[Cl=

Note that extension—shear coupling exists due to terms such as Cj. Although
13 independent elastic constants are present in this stiffness matrix, there are 20
nonzero terms. As the number of conditions of material symmetry increases, the
number of elastic constants required to describe the material decreases.

2.4.2 Orthotropic Materials

The relationship between stresses and strains in the primed and unprimed coordi-
nate systems for an orthotropic material can be established by allowing rotations
of 180° from the original reference frame about the z- and x-axes. The rotations
about the z-axis follow those of the previous section using equations (2.2) and
(2.4). These two equations cannot be directly applied to rotations about the x-axis,
since they were defined only for rotations about the z-axis. A more general set of
transformations (as presented in Appendix B) is required to establish the primed
and unprimed relations for rotations about the x-axis. It should also be noted that a
third rotation about the remaining axis does not reduce the stiffness matrix further.
Proceeding as in the previous case, relating the stresses and strains in the primed
and unprimed coordinate systems, coupled with the invariance of [C], establishes
the orthotropic stiffness matrix, expressed as

Cuy Cpp Ciz O 0 0

Cip Cypn Cxn O 0 0

[C] = Ciz Cxn Ci3 O 0 0
- 0 0 0 Cu O 0

0 0 0 0 Css O

0 0 0 0 0 Ces

There are 9 independent elastic constants associated with an orthotropic material
and a total of 12 nonzero terms. In addition, there is no shear—extension coupling.
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2.4.3 Transversely Isotropic Materials

For a transversely isotropic material there is an axis of material symmetry (defined
as a direction with respect to which the material has identical properties) in addition
to three planes of symmetry. Therefore, any two material fibers having symmetrical
positions with respect to the axis of symmetry have the same stiffness. If the z-axis
is assumed to coincide with the axis of symmetry, the x- and y-axes can be in any
direction (provided they remain perpendicular to each other) without altering the
value of [C]. In this case the x—y plane is referred to as an isotropic plane. Under
the assumption that the z-axis coincides with the axis of symmetry, the stiffness
matrix is

Cny Cpp Ci3 O 0 0
Cnp Cuy Ciz O 0 0
(C] = Cs Ci3 Cxn O 0 0
- 0 0 0 Cu O 0
0 0 0 0 Cu O
0 0 0 0 0 Ce
where c c
Ce = 1 . 2

A transversely isotropic material has 5 independent elastic constants and 12 nonzero
terms. The form of the stiffness matrix would be different if another axis were
chosen to represent the axis of symmetry as shown in Tsai [4].

2.4.4 Isotropic Materials

For an isotropic material, all planes are planes of material symmetry and are
isotropic. There are 2 independent elastic constants associated with an isotropic
material and 12 nonzero terms in the stiffness matrix. The resulting stiffness matrix
for an isotropic material is

Ciu Cip Ci2 O 0 0

_|Ci2 Cip €y O O O

€I=1%" 0 0 Ccuw 0 0O

0 0 0 0 Cy O

0 0 0 0 0 Cu
where c c
Cos = 11 . 2

2.4.5 Summary of Material Responses

To summarize stress—strain relationships for anisotropic, monoclinic, orthotropic,
transversely isotropic, and isotropic materials, we note that the form of each stiff-
ness matrix shown previously is valid only for rotations about those axes specified.
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The total number of independent elastic constants in each case remain the same,
but the number of nonzero terms for each stiffness matrix changes. Stress—strain
relationships for a variety of material property symmetry conditions are found in
Tsai [4, 5]. A summary of the number of independent elastic constants and nonzero
terms for each material considered is presented in Table 2.1. In this table the term
on-axis is used to indicate rotations about an axis of symmetry, while off-axis
refers to a rotation about one of the reference axes, and general refers to rotations
about any axis. An orthotropic material in an on-axis configuration has 12 nonzero
terms in its stiffness matrix. If a general rotation were used for the same material
system there would be 36 nonzero terms, as for an anisotropic material. Similar
observations can be made for other types of materials. Even though one generally
begins by assuming an orthotropic material response for individual lamina, the
final laminate may behave as an anisotropic material in which extension and shear
are coupled.

Table 2.1. Summary of material symmetries (after [4]).

Type of Number of Number of Number of Number of
Material Independent  Nonzero Terms  Nonzero Terms  Nonzero Terms
Symmetry Constants (On-axis) (Off-axis) (General)
Anisotropic 21 36 36 36
Monoclinic 13 20 36 36
Orthotropic 9 12 20 36
Transversely isotropic 5 12 20 36
Isotropic 2 i2 12 12

2.5 Strain-Stress Relationships

The strain—stress relation is obtained by inverting the stiffness matrix in the
stress—strain relation {o} = [C]{e}, resulting in

{e} = [C]'{o} = [S]{a}

where [S] is the elastic compliance matrix and is symmetric. The general form of
the strain—stress relation is {€} = [S]{c}. For an anisotropic material,

Sy Sz Sz S S5 Se
S12 S22 Sz S S5 S
S13 823 S3z Sy S35 S3
S S24 Sy Su Sas Sas
Sis S5 S35 Sas Sss Sse
Sie S Sz Sie Sse  Ses

[$]=

As various forms of material symmetry are considered, this matrix reduces in the
same manner as the stiffness matrix. For the monoclinic and orthotropic materials
the elastic constants above change to:

Monoclinic: Sta =815 =524 = 834 = S35 = S46 = S5 = 0
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Orthotropic: (all monoclinic constants) and

S16 =526 = S36 =845 =0

The compliance matrices for transversely isotropic and isotropic materials are

Transversely isotropic: Isotropic:
Sy S22 Sz 0 0 O S Sz Sz 0 0 0]
[5]= Si3 S35 S35 0 0 O [§]= S S22 Su 0 0 0
“10 0 O S4 O O {0 0 0 S4 O O
0 0 0 0 S4 O 6 0 0 0 S4 O
0O 0 0 0 0 Se 0 0 0 0 0 Suf
where

Se6 = 2(S11 —S12) Sas =2(511 — S12)

2.6 Thermal and Hygral Effects

The previously defined relationships between stress and strain are valid as long
as temperature (thermal) and moisture (hygral) effects are not present. In many
structural applications involving traditional engineering materials, the forgoing
relationships would be sufficient for most stress analysis. In the case of lami-
nated composites, however, this is not true. The effects of both temperature and
moisture (relative humidity) on the stiffness and strength of polymeric compo-
sites is schematically illustrated in Figure 2.9, where AM represents the change in
moisture content (measured as a percentage). In space applications thermal effects
can be severe. One side of a structure may be subjected to direct sunlight while
the other is subjected to freezing conditions. This results in a thermal gradient
within the structure and a complex state of stress. This thermal gradient may even
by cyclic, further complicating the analysis.

=4

©

| =

g

7]

el

=

[

F] AM=0
>

3

= AM>0

Temperature

Figure 2.9. Schematic representation of the effects of temperature and moisture on elastic
modulus and strength.

In addition to the effects temperature and moisture have on the modulus and
strength, they also affect the strains. Consider a simple one-dimensional case where
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the total strain for an elastic body is given by
{e} = {e}m + (&) + ()" + (Ehmis
where

{€}m = elastic or mechanical strain
{€}T = thermal strain
{e}! = hygral strain

{e}mis = miscellaneous strains, such as plastic strain

The thermally induced strains can be expressed as
{e}T = a(AT)

where T is the change in temperature from an initial reference temperature to a
final operating temperature. In general the initial temperature (7o) is regarded as
the stress-free temperature, or the temperature at which no thermal stress exists.
The final, or operating, temperature (7T') is the temperature at which the structural
component is required to perform, and AT = T — T. The term « is the coefficient
of thermal expansion and in general has different values in each direction. A simple
means of describing « is with subscripts, such as «;, where i = 1, 2, 3.

In a similar manner the hygral strains are expressed as
(e} = p(am)

where AM is the percentage change in moisture and § is the coefficient of hygral
expansion. As with thermal effects, the 8 terms are also subscripted as 8;, where
i=1,2,3.

The «; and B; terms used to describe thermal and hygral coefficients are dilatational,
meaning that they affect only expansion and contraction, not shear.

For a case in which there are no miscellaneous strains (ep;s = 0), we write {¢} =
{e}m + {€)T + {e}1 = {€}m + AT + BAM, and the mechanical strain is

(e}m = {6} — aAT — BAM

2.7 Complete Anisotropic Response

The complete set of governing equations for anisotropic polymeric composites can
expressed in shorthand notation as

£i=SijO'j+(¥iAT+ﬁiAM (l=1,2,3), (j=1—6)
8i=S,'j0’j (i=4,5,6), (]=1—6)

2.5)
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where ¢; is the total strain and S;;0; is the mechanical strain. In expanded matrix
notation this equation becomes

3 Sii Siz Sz Su Sis S| (o o) Bi
€2 S12 S S Su S Swl] o2 a; B2
£3 S13 823 833 S S35 S |) o3 o3 B3
= AT AM
€4 St4 S24 S3a Sas Sas Sas|) oa Vo0 + 0
&5 S5 Sas S35 S4s Sss Sse || o5 0 0
€6 Sie S Sz Sac Sse  Ses | | 06 0 0

The relationship above can also be expressed in terms of the stiffness matrix [C],
obtained by multiplying the entire expression by [S; j]‘l. This results in

o; = Cij(é‘j —(XjAT—ﬂjAM) (l =1,2, 3), (_] = 1-6)
0, =Cij(ej —a;AT — B;AM) (i=4,5,6),(j =1-6)

In these expressions we note from the previous section we can write £q = (g; —
a;AT — B;AM); therefore, 0; = C;;{€;}m, where {€;}n is the mechanical strain.

Example 2.3. Assume the compliance matrix for a particular material is

7 11 -8 12 5 -8
11 25 -15 25 8 -15
-8 -—-15 2 -30 S5 12
12 25 -30 15 19 11

5 8 5 19 -1 12
-8 -15 12 11 12 2

[S] = x 1070

Assume the thermal and hygral coefficients of expansion are constant over the
ranges of AT and AM of interest and are

) 10 B 0.10
@ $={ 5% pinfin’F { B2 b =< 0.40
a3 2 Bs 0.20

Using the expanded form of equation (2.5), the strains are represented as

&4 7 11 -8 12 5 -8 o
& 11 25 —-15 25 8 —15 o2
sl _|-8 —15 2 =30 5 12| ) o
ea( |12 25 =30 15 19 11 o4
&s 5 8 5 19 -1 -12} 105
g6 -8 —-15 12 11 -12 2| | o6

10 0.10

5 0.40

+ 2 x 107°AT + 020 L A pr

0 0

0 0

0 0
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Assume a state of plane stress in which the only nonzero stresses are o7 = 20 ksi,
o7 = 10 ksi, and og(= 112) = 5 ksi. The strains are

£1 210 10 0.10

£2 395 5 0.40

&3 _ —250 —6 2 -6 0.20

e (= 545 { ¥ 1077 + 0> 107°AT + 0 AM
&5 120 0 0

£6 —300 0 0

From this we observe that the shear strains (g4, &5, £¢) remain constant for any
AT and AM values considered. The normal strains are affected by both AT and
AM. It is also observed that even though a state of plane stress exists, the out-
of-plane shear strains (¢4 and &s) are present. In order to evaluate the effects of
AT and AM, assume they are limited to the ranges of —300°F < AT < 300°F
and 0 < AM < 0.10. A plot of the variation of &, as a function of AT and AM is
presented in Figure E2.3. The results are seen to be linear for each case, and plots
of either of the remaining normal strain components would also be linear (the
magnitudes are different). These results are somewhat fictitious, since moisture
and stiffness and compliance are coupled to temperature.

15000 T T T T T T T T T v T
_ - ———— AM=0 I
£12000~ — — — AM=0.05 - .
g - — — —AM=010 _ _ —— " n
= 9000 |~ - ]
£ = - - — T
£ 6000 |- - - =
/3] —
B ~ - - 7 .
£ 3000 |- - - ]
E —
s 3 _
o N
-3000 P e —
~300 -150 0 150 300

Temperature (°F)

Figure E2.3. Effects AT and AM on &,.
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2.9 Problems

2.1 Determine the displacement field for the following states of strain. If a strain
component is not specified, assume it to be 0.
(A) & = —1000 pin/in, &, = 1000 pin/in, y,, = 400 p
(B) &, = 600 pin/in, &, = —1000 pin/in, y,, =400 p
(C) &x = —500 pin/in, &, = —~1000 pinfin, ¥y, = —-200 p

2.2 Determine the deformed lengths of lines AB and CD, and the angle between
lines after deformation. Note that lines AB and CD are perpendicular before
deformation. Assume that the only nonzero strains on the underformed cubic
solid are:

(A) & = 10,000 pinfin, &, = 20,000 pin/in, y,, = 30,000 p
(B) & = 3000 pinfin, &, = —1200 pin/in, yy, = 900 p

(A) (8) '\

~——— 3,00" ——

30° gC
(]
A A
60° o - \ 6.00"
4.00" Ty y
B B
D

° | B L—aoo* —

2.3 Determine the state of stress that exists if the nonzero strains at a point
in a material are &, = 300 pin/in, &, = 150 pinfin, y,y, = —200 p, and the
stiffness of the material is

200 —50 0 0 O 50
50 150 0 0 0 50
o o 15 o o0 o S
[€1=1 6 0o o 100 o0 o |*0ps
0O 0 0 0 100 0
50 0 0 0 0 100

2.4 Work Problem 2.3 for the following stiffness matrix:

500 -50 50 —-100 -50 50
-50 250 100 -100 -50 25
50 100 125 —-50 100 50
-100 —-100 -50 100 100 25
-50 =50 100 100 200 50
50 25 50 25 50 100

[C]= x 10° psi
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Use the stiffness matrix of Problem 2.3 to determine the state of strain
for the following states of stress. The stresses for each part correspond to:
(Ux, Uy7 az’ 4[,\:Za ryz, rxy)

(A) {50, 25, 10, 20, —10, 10} ksi

(B) {0,0,0, 10, 10, 10} ksi

(©) {—10,0,40,0,20, —20} ksi

A Cubic solid is deformed as shown. Determine the state of strain which
exists. The solid lines represent the undeformed state.

(A) (B)
R
0.015" ‘\
\
/ \\
3.00" _,-‘
q 9 -
s = _r: R e 06
= ] 11
- 4.00"—> 3.0" 0.009"

Use the stiffness matrix of Problem 2.3 to determine the stresses required to
produce the displacements defined in Problem 2.6 (A) under the assumption
that x, y, z are the 1, 2, 3 directions.

Use the stiffness matrix of Problem 2.4 to determine the stresses required to
produce the displacements defined in Problem 2.6 (B) under the assumption
that x, y, z are the 1, 2, 3 directions.

The stiffness matrix of Problem 2.3 can be inverted to produce

7.69 4.62 0 0 0 —6.15
462 1077 O 0 0 -7.69

|l oo 0 667 0 0 0 .
S1=1 0 0 100 O o |*10
0 0 0 0 100 0

—6.15 -769 O 0 0 16.92

The coefficients of thermal and hygral expansion are

(¢ 2] 12 .Bl 0
o » =4 4 Spinfin/F < B $ =< 0.40
a3 4 Bs 0.40

Assume AT = —300°F and AM = 0.005. Determine the strains in the prin-
cipal material directions for a state of stress described by the notation (o),
07, 03, 04, 05, Op).

(A) [10,5,0,0,0, 5] ksi

(B) [-10, 10, 5, 0, 5, 10] ksi

©) [0, 10, 5, 0, 5, 0] ksi
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2.10 Assume that the material described by the compliance matrix of Problem 2.9

2.11

2.12

is subjected to the state of stress shown. Furthermore, assume that the coef-
ficients of thermal and hygral expansion given in Problem 2.9 remain appli-
cable, and that AT = —300°F. On the same graph, plot (&1, &2, €3, &4, &s, €6)
as a function of AM for 0.0 < AM < 0.05.

(A) 2 ksi (B) C) 4 ksi

10 ksi
A / y
-1‘ 4 ksi
5 ksi| % g ksi
- —>. - .
T 1@’ 5 ksi j Gksi 2 X
10 ksi * 2 Kksi

Work Problem 2.10 (A), (B), or (C) assuming AM remains constant (AM =
0.005), and AT varies in the range —300°F < AT < 300°F. The resulting
plot for this problem should be in terms of AT instead of AM.

Assume a material that has thermal and hygral properties defined as

a 10 B 0.05
ay =4 6 % pinfin/°’F { B, » =< 0.20
a3 3 B3 0.10

Furthermore, assume that these properties remain constant for all ranges of
AT and AM considered. For a constant AT = —300°F, and 0.0 < AM <
0.020, plot, on the same graph, the stress (as a function of AM) required to
produce displacements corresponding to Problem 2.6 (A), if

500 -50 50 -—-100 -50 50
=50 250 100 -100 -50 25
50 100 125 —50 100 50
-100 -100 -50 100 100 25
-50 =50 100 100 200 50
50 25 50 25 50 100

[C]= x 10* psi
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LAMINA ANALYSIS

3.1 Introduction

One difference between laminated composites and traditional engineering mate-
rials is that a composite’s response to loads is direction dependent. In order to
analyze the response of a composite, we must be able to predict the behavior
of individual lamina. A lamina {(considered a unidirectional composite) is char-
acterized by having all fibers (either a single ply or multiple plies) oriented in
the same direction. This model allows one to treat the lamina as an orthotropic
material. In reality fibers are not perfectly straight, or uniformly oriented within
the lamina. There are generally several layers of fibers nested within a single
lamina. The model used to represent a lamina consists of a single fiber per layer.
In developing relations between material response and applied loads the simplified
model is an accepted representation. A schematic of an actual and modeled lamina
is presented in Figure 3.1. The 1, 2, and 3 axes are the principal directions of
orthotropic material behavior, defined as follows:

1: Principal fiber direction
2: In-plane direction perpendicular to fibers
3. Out-of-plane direction perpendicular to fibers

3.2 Mechanical Response of Lamina

In order to evaluate the response of a lamina, each component of the stiffness
matrix [C} must be determined. The stress—strain relationships needed to define
[C] are obtained by experimental procedures as discussed in Chapter 4. A uniform
stress is easier to approximate than uniform strain; therefore, the stiffness matnx is
established by first developing the compliance matrix {$] and inverting it to obtain
[C). The lamina is orthotropic so extension and shear are uncoupled in the principal
material directions. The extension and shear components of the compliance are
determined independent of each other, with uniaxial tension used to determine the
extension components. Figure 3.2 shows the directions of normal load application
required to establish the normal stress components of [S] in each direction.

37
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3

A
/1

Actual Modeled
Figure 3.1. Schematic of actual and modeled lamina.

-~ 444 R

o= constant o= constant G3= constant

Figure 3.2. Schematic of applied stress for determining an orthotropic elastic compliance
matrix,

By application of a normal stress in the 1-direction (with all other stresses being
zero), normal strains in the 2 and 3 directions result. There is no shear—extension
coupling, so the relationship between each normal strain and the applied stress is

o e —V20; — Vi3
_ — 2: =
E, E, E;

£

where E is the elastic modulus in the 1-direction (parallel to the fibers); vz is
Poisson’s ratio in the 2-direction when the lamina is loaded in the 1-direction;
and vy 1s Poisson’s ratio in the 3-direction when the lamina is loaded in the
1-direction.

Similarly, by application of a normal stress in the 2-direction (with all other stresses
zero), the relationship between strains in the 1, 2, and 3-directions and the only
nonzero applied stress component &; is
c — V2102 c oz . — Va2
! E, E; E;
The strains developed with o3 as the only nonzero stress component are

— VT — V5203 o3
El=——— £ = &= g
3

E3 E3
Combining these results, and recalling that {g;] = [5;,]{g;}, the extension terms are

1 —¥7 — V3
11 E 12 E 13 E,
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—v2 1 —v3

21 E, n 5 23 E, (3.1)
-3 —un

3 E 1 £, Sl

The elastic modulus and Poisson’s ratio can be expressed as £,, the elastic modulus
in the i-direction, with a normal stress applied in the i-direction, and v;;, Poisson’s
ratio for transverse strain in the j-direction, with a normal stress applied in the
i-direction.

Since the compliance matrix is symmetric, a simplifying relationship exists between
Poisson’s ratio and the elastic moduli:

Vij Vii .,
— = = L Jj=1,23 32
E " E (¢ j ) (3.2)

Alternatively,

Y2 _vmowiz_vaovs o vm

E\, E, E Ei Ey E,
Fibers are generally stronger and stiffer than the matrix. Therefore, E, (associated
with the fiber direction) is typically greater than either E; or E3; (associated with

the matrix direction).

The relationship defined by (3.2) can be used o express (3.1} as

1 -2 — V3

n= g 12 3 13 E,
—Uuy2 1 —vn

21 E, n=g 23 E (3.3)
—V3 —13 1

YT g MT R TPTE

In addition to the normal components of the compliance matrix, the shear terms
Sa4. Sss, and S must be determined. In principle this is a simple matter, since
there is no shear—extension coupling. By application of a pure shear on the 2-3,
1-3, and 1-2 planes, the relationship between shear stress and strain is

1 | |

=—— Sss= —
Ga3

S44 Sﬁﬁ - =
G Gy

(3.4)

where G;; is the shear modulus corresponding to a shear stress applied to the
ij-plane. In order to completely characterize an orthotropic lamina, nine elastic
constants are required. Not all nine of these constants are generally determined.
In many cases the 1-2 direction is given most of the attention, since properties in
the 1-3 and 2-3 directions are difficult to establish.
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3.2.1 Stiffness Matrix

The stiffness matrix is obtained by inverting the compliance matrix. The stiffness
matrix is, by convention, expressed as [{?] instead of [C]. The form of the stiff-
ness matnix presented in Chapter 2 for an orthotropic material is more accurately
referred to as specially orthotropic. The stress—strain relationship for a specially
orthotropic lamina is

a] CGn Quz Qs 0 0 0 £

ey Cn Q@ On 0 0 0 £2

O3 — Q]3 Q23 Q33 0 O 0 £3 (3 5)
04 0 0 0 Qu 0 0 £4 ’
o 0 0 0 0 Qs 0|]es

% 0 0 0 0 0 Okl e

The individual components of the stiffness matrix [(?] are expressed in terms of
the elastic constants as

Qu = Ei(1 —vaavn)/A
0n = Ex(1 — vy vi3)/A
13 = E3(1 —vizvy)/A
Q12 = E1(va + vaiv3)/ A = Ez(viz + vazviz)/ A

Q13 = Er(var +varvia)/ & = Ez(viz + viavn)/A (3.6)
U1 = Ey(v + viovn )/ A = Es(vys + vaivin)/A

Qs = Gp3

Qs =Gi3

Uss = G12

where
A =1 — v — va3vis — vy vz — 2v3v V3

Under approprate conditions these expressions can be simplified. For example,
the elastic moduli in the 2- and 3-directions are generally assumed to be the same
(E2 = E3), which implies v23 = 133 and vovy3 = wavy. Simplifications to these
equations can be made by assumptions such as plane stress.

The relationships between elastic constants (shear, bulk, elastic moduli, and
Poisson’s ratio), which must be satisfied for an isotropic material, place restrictions
on the possible range of values for Poisson’s ratio of —1 < v < 1/2. In a similar
manner, there are restrictions on the relationships between v;; and E; in orthotropic
materials. These constraints, first generalized by Lempriere [l], are based cn
considerations of the first law of thermodynamics. In formulating these constraints,
both the stiffness and compliance matrices must be positive-definite. Therefore,
each major diagonal term of both matrices must be greater than 0. This results
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in two restrictions on elastic moduli and Poisson’s ratio. They are deduced from
equations (3.3), (3.4), and (3.6) to be E,, Ea, E3, G2, Gia, Giz > 0 and (1 —
vz ), (1 — vyvy3), (1 — viavg;) > 0. From the second of these relationships and

equation (3.2), it can be shown that

E.
|vij| < =t
VE;'

Six relationships are represented by this equation:

lvag| < é vy < —1 [vazl < -3
21 E, 12 5 V2 2
E2 EI

b3 = B [vs1] < [vial < 4/ =
3 E;3

In conjunction with these relationships, it can also be shown that
A=1—vipvy — vy — vy — 2vavg v > 0

This expression can be rearranged to show that

V21 V3zV53 ‘~’-1 1 —vi (El— —uE (g> _ 2 (E) {l
3 o\ E, 2\, n E; 5

In tarn, this relationship can be manipulated to show that

- (][ ()] fofa o5 -

A relationship between v)2 and the other terms in this expression can be obtained
by further rearrangement of the preceding expression, The form of this relationship

is, from Jones [2],

Es E, E, £
_{v32v|3(-ﬁ—‘:)+‘/l—v§2(g)\/l U%E(E )1JE]}<\:2|<

EZ E2 E3 E2
- {(e—) ‘\/‘ ‘”‘3'2(5—3)\/1‘”?*(5.)\{5—1}

Additional expressions involving va; and vi3 can be formulated, but are not
presented. These restrictions on the engineering constants for orthotropic materials
can be used to evaluate experimental data and assess whether or not it is physi-
cally consistent within the framework of the elasticity model developed. Numerical
values of Poisson’s ratto determined from experimental techniques may appear 10

be unrealistically high, but fit within the constraints presented [2].
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3.2.2 Transformation of Stresses

Equation (3.5) is based on elastic constants for the special case of the x-axis
coinciding with the l-axis of the material (an on-axis configuration). In this
arrangement the x (1)-direction is associated with the maximum lamina stiffness,
while the y (2)-direction corresponds to the direction of minimum lamina stiffness.
It is not always practical for the x-axis of a lamina to comrespond to the J-axis of
the material. An orientation in which x—y and 1-2 do not coincide is an off-axis
configuration. Both configurations are illustrated in Figure 3.3.

@ N ‘; 1
— . 7.
%
on-axis oft-axis

Figure 3.3. On- and off-axis configurations.

The on-axis stress—strain relationship of equation (3.5) is not adequate for the
analysis of an off-axis configuration. Relating stresses and strains in the x~y
system to the constitutive relations developed for the 1-2 system requires the use
of transformation equations (2.2) and (2.4) (repeated here in abbreviated form):

Ey Ex 24] oy
gm0} e
L1 Yxy Tg Tyy

From equation (3.5) and the stress and strain transformations just shown, the
principal material direction stress components in terms of Cartesian strain compo-

nents are
(48] £ Ey
{ . }=[Q]{ : }“—'IQI[K]{ : }
Je 3 ¥xy

Cartesian and principal matenal direction stresses are related by

(2% [0 ]
Lot
Try ¥g

The Cartesian stress—strain relationship can be written as

Ty Ex
{ ‘ } = [T,]7'[QIT.] { . }
Tyy Yay
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This expression can be simplified by defining a new matrix [Q], where
[01 = [T, '[QT)

The expanded form of the Cartesian stress—strain relationship is

oy O T B 0 0 B,
o, glz 922 923 0 0 926 £y
o | _ @iy O O ﬁO 70 Qs £, G.7)
Tw 0 0 0 Qu Qs 0O Yz ‘
T 0 0 0 Qs Qs 0 Ve
Py 016 O Ox O 0 Qg | Yay
Each element of [Q] is defined as

On = Qum® +2(Qu2 + 2Qse)m*n* + Qpn®

Oy, = (Qu + Q22 — 406s)m*n* + Qp2(m* + n*)

013 = Quam* + Onn’

O = —Onmn’® + 0um’n — (Q12 + 2066 )mn(m* — n*)

Q2 = Qun® + 2012 + 2Qes)m’n® + Quam*

O = Quin’ + Qnym?

Oae = —Qum’n + Qnmn® + (@12 + 2Qss)mn(m? — n?) (3.8)

O = O

036 = (@13 — Qa3)mn

Ous = Qum® + Qssn’

Qss = (Oss — Qaq)mn

Oss = Ossm® + Qaan’

Oes = (O + Q0 — 2012)m°n* + Qe(m” — n*)

where m = cos6 and n = sin8. Equations (3.7) and (3.8) allow for the analysis of
an off-axis lamina provided an on-axis constitutive relationship exists. Note that
the off-axis relations equation (3.7) indicate extension—shear coupling.

The orthotropic material response of equation (3.7) appears to be different from
the spectally orthotropic response of equation (3.5) because of the reference system
chosen to define the material behavior. In Chapter 2 (Table 2.1}, the namber of
independent elastic constants and nonzero stiffness matrix terms for an orthotropic
material were presented. Comparing equations (3.5) and (3.7}, it should now be
easier to see the relationship between a material response and a selected refer-
ence axis. The same behavior is predicted by both equations (3.5) and (3.7). The
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difference between them is the reference system used to define the response. Although
there are still only 9 independent elastic constants represented by equation (3.7),
there are 2{} nonzero terms in the stiffness matrix. The material response defined
by equation (3.7) is termed generally orthotropic. The material response previously
termed specialty orthotropic is typically reserved for on-axis cases in which there is
no shear—extension coupling.

The development of equation (3.8) follows directly from the transformation equa-
tions in Chapter 2. From examining the terms associated with each @;; it is evident
that coupling between sin@ and cos® terms exists. Figure 3.4 shows the sign
convention for which equation (3.8) is valid. Although it will generally not affect
most terms of the [Q) matrix, a mistake in the positive or negative sense of &
can influence the shear terms (Q4, Gag, @16. and Qys). In some texts a positive
angle 6 is measured from the principal materal axis (1) to the x-axis. For our
development this would cause the » (sin8) term in equation (3.8) to be negative,
thus causing a sign change. Although the sign of the shear stress generally does
not affect the shear failure strength of a lamina, it does have an effect on other
stress components.

' 3 24

2 T oA N o
Yl =

\ e e s |
7 = &S{'X 1

positive 8 nagative 6

N

_Y

Figure 3.4. Sign convention of positive and negative fiber orientations.

3.2.3 Plane Stress Analysis

For plane stress, equations {(3.5) and (3.7) reduce since one normal and two shear
components of stress are zero. As in the case of an isotropic material, the elimi-
nation of stress components does not imply that strain components become zero.
Either the stiffness or the compliance matrix can be used for plane stress analysis.

3.2.3.1 Stiffness Matrix

In the case of plane stress we assume that in the material coordinate system
g3 = 04 = 05 = 0. The stiffness matnx for plane stress is termed the reduced
stiffness marrix. The on-axis form of the reduced stiffness matrix is similar to the
[@] of equation (3.5) and is

Ou Gz 0
[Qf = [le Oxn 0 } 39
0 0 Qe

where the individual terms are
F Ey
On=7"— On=—7""—
1 — vipimyg 1 —vigvn
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vigks vk

Oss = G2

Q= =
L—vizvz 1 —vjzuy
Although both out-of-plane shear strains are zero for this case, the normal strain
(£1) exists and is easily derived from equation (3.5).

The off-axis form of the reduced stiffness matrix contains out-of-plane strains.
Both normal {£,) and shear strains (3, and y;) may be present under the plane
stress assumptions of o, = 1, = 1,;, = 0. These shear strains are not generally
included for in-plane analysis. In some cases these terms are included, but are
separated from the in-plane portion of the analysis. Beam, plate, and shell prob-
lems formulated from a displacement field approach generally include these terms.
Such formulations are considered advanced topics and are not addressed in this
text. The off-axis form of the reduced stiffness is formulated using the stress and
strain transformations of Chapter 2 along with equation (3.9). Following the same
procedures as before resulis in

Oy gu le glﬁ g,
{ ay } = 912 922 926 { gy } 3.10)
Tey Qe O Pes ey

where the corresponding terms from equation (3.8) remain applicable for the pilane
stress case given by equation (3.10).

The variation of each component of [Q] with & is illustrated in Figure 3.5 for
a carbon/epoxy lamina. Although @, and (,, are the dominant terms for all
fiber orientaticns, all components of [O] contribute to defining the overall material
response characteristics.

& - qbari
- gbari2

GBAR

Theta (degrees)
Figure 3.5. Variations of (@] with 0 for a carbon/epoxy lamina.

3.2.3.2 Invariant Form of Q

The components of {Q] in equation (3.10) can be expressed in a form different from
equation (3.8}. This alternate representation is known as the invariant form of [Q]
and was first introduced by Tsai and Pagano [3]. In order to establish the invariant
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forms of [Q], recall the trig identity c0s? 8 = (1 + cos 28)/2, and the similar one
for sin? 8. Using these yields

cos?® = (3 + 4c0s 28 + cos 46)/8
sin@ = (3 — 4¢0s 26 + cos 46)/8
sin# cos’ # = (25in 20 + sin 49)/8
cos@sin’ @ = (2sin 28 — sin 48/8
sin? fcos? # = (1 — cos46)/8

Evaluating (J;, from equation (3.8) and using these trig functions results in

0 2
Qu=0 +fh:oslfi’—l~cos4¢9)%ll +2(1 - 00549)9%_966

+ (3 —4cos20 + (:os«flﬁ')-Qg22

301 + 2012 +4Q66 + 300 4Q11 — 40
= g + 3 cos 29

(Qn —2Q1 — 406 + On
+ 3

) cos 44
This expression, as well as similar expressions for the remainder of the [Q) matrix
can be simplified. The following definitions are introduced
Uy = §[3C11 + 300 + 2012 + 4Q%s]
Uz = $(0n — Q2]
Us = 3[0n + On ~ 2012 - 4066] 3E.1D
Us = 3[Qn + @2 + 6012 — 4Q%6]
Us = 5[0n + 022 — 2012 + 4Q06s]

The explicit form of [Q} can now be expressed as

4 a 3
=11 Uy  cos20 cos 46
gzz Uy —cos28 cosdd 1
Ol _|Us 0 —cos 49

) Oes ¢ = Us 0 —cos 48 gz} (3.12)

Ore 0 sin26/2  sind@ 3
= 0 sin28/2 —sindd

gUry

This expression for {{] provides an alternate representation for several terms
in equation (3.8), but does not prove the invariance of any parameter in equa-
tions (3.11) or (3.12). In order to prove that some of these quantities are invariant
{meaning they do not depend on fiber orientation), we examine the [/, term.
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Initially it is assumed that an off-axis configuration is being investigated. In the
off-axis configuration U, is expressed as U}, and [Q] is replaced by [(O]. There-
fore, U} = (3@, + 305 + 20, + 404 )/8. Substituting the appropriate expres-
sions for each [Q] term from equation (3.12) and simplifying leads to U} =
(6L + 2U 4 + 4Us)/8. Substituting the expressions for Uy, Uy, and Us from
equation (3.11) into this equation yields U} = (3011 + 302 + 202 + 4066 )/8.
This is the expression for U, given in equation (3.11). Therefore, U, is invariant,
which means that it does not change with the odentation of the lamina. In addi-
tion, it can be shown that U, and U5 are also invariant. Similarly, it can be shown
that Us = (U/y — Uy4)/2. The primary advantage of expressing the components of
{Q] in invariant form is that it can lead to simplifications in the design process,
since several terms which do not vary with orientation are involved. Consider, for
example, the @), term, which can be expressed as

0, = Uy + Uzcos28 + Ujcos 46

This term can be decomposed into its components, with each plotted as a function
of 8. As seen in Figure 3.6, the total response of [Q] is linked to two components
that vary with & and one that is invariant. The usefulness of the invariant form of
[@] becomes more evident when laminate analysis is considered.

Qyy u, Uz cos 20 U; cos 49

L 1 ] ' Nl } /l
T  — T T L} T T
/2 w2 \uz \/ w2

Figure 3.6. Components of Q.

3.2.3.3 Compliance Matrix

As with the stiffness matrix, the compliance matrix reduces for cases of plane
stress. The strain—stress relationship for an on-axis configuration is

£y Sy Sz 0 o)
£2 = S]z Szz 0 [25] (313)
Y12 0 0 S T2

where each component is expressed in terms of the elastic constants as

1 —y2 —V21 | 1
Sji=— Sp=—= S =— Seg=-— 314
n=g 12 E, E 22 E &6 6o ( )

Following transformation procedures similar to those for establishing [Q], it can
be shown that the off-axis strain—stress relationship for a case of plane stress is

£y ?11 ?12 §16 o,
{ £y } = SIZ SZ? 526 { a, } (3[5)
Yay Si6 S26  Ses Ty
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where

§|[ = S||m4 + (252 + S@@)mzﬂz + Szzn4

S12 = (Si1 + S22 — See)m’n® + Siz(m* + n*)
Sie = (2511 = 2842 ~ See)m’n ~ (2827 ~ 281 — Sgg)mn’

(3.16)

S = Sunt + (2812 + Ses)m’n® + Spm*

S26 = (2811 — 2512 — Ses)mn’ — (2522 — 2812 — Ses)m’n

Ses = 2(251) + 253 — 4815 — S(,ﬁ)mznz + S(,(,(m4 + n"‘)

The sign convention used for & must be the same as that used for equation (3.8),
as defined in Figure 3.4.

The compliance matrix can also be expressed in terms of invariants. The derivation
is analogous to that for the stiffness matrix. Using the same notation as before,

we define

iy
U,
Us
U,
Us

£13811 + 3522 + 2512 + Ses)

1iSi — $22]

&[St + S22 — 2512 — Ses) (3.17)
(811 + S22 + 6512 — See)

2IS1 -+ S22 - 2812 + Sesl

The expressions for [S] in terms of &/, through Us are

r §!I )
Sx
Siz
See
Si

\326.1

U
U,
Us
Us
0
0

cos 26 cos 44
—cos28 cos 46

1
0 —cos 44
0 —4cos 48 {Uz} (3.18)
sin 26 2 sin 44
sin 26 —2sin4g

The compliance matrix can be used to obtain useful information regarding off-axis
lamina response. Consider, for example, the off-axis lamina shown in Figure 3.7.

o~ b4

00000

Figure 3.7. Off-axis lamina subjected to uniaxial tension.



Www.iran—-mav ad.com

Slge ypwadige 5 bgzxiils x> 5o Lamina Analysis 49

o

This lamina is subjected to an applied stress a,. The strain in the direction of
loading (z,) 15 to be monitored during loading. The strain and stress for this case

are related by
Ex _{ O _ [ Ox
EIREIRLIT
Yy Tyy 0

From this it is apparent that £, = S 0,. From the definition of elastic modulus,
we write g, == E,g,. For the apparent engineering modulus in the x-direction, the
preceding expression can be writien as

£y I

o E, Si = Snm* + (2812 + See)m*n® + Spon’
UX X

Using the definitions of §),, S)2, etc., this expression is written as
| m4 ( 1 21)12) 2 2 n“
— =4+ — - —|jmn°+ -
EI E| G[z E[ E2

Following similar procedures, one can relate the apparent engineering constants in
an off-axis configuration (E,, E,, etc.) to on-axis material properties by loading a
lamina in its nonprincipal directions. The following expressions result:

1 m 1 2w 5, , n°
a*a*(a‘?])"'" 5

| P’I4 ! 2[)12) 2.7 m"‘

Ey_El+(G]2 E e +Ez

1 2 2 4up 1 (n* +m*)
—~=2m2n2(——+—+————)+—
Gy E, Es E1  Gn G (3.19)

4 4 1 1 1
b, B (L 1LY
E; E, E; Un

Neyx = E;IC|m3n - szn3]
Nayy = E}.[Clmn3 — anm3]

where
2 2v2 1 2 2u2 1

s 2z

€, ==
: £, E, G2

= — 4 — — —

E, K, G
The »'s are called coefficients of mutual influence, credited to Lekhniski (4], and
are defined as follows:

niij = coefficient of mutual influence of the first kind, which characterizes
stretching in the i-direction caused by shear in the /j-plane, and can be
written as .
M =— fore, =1
Yij
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ni;: = coefficient of mumal influence of the second kind, which characterizes
shearing in the i j-plane caused by a normal stress in the /-direction, and
can be written as
Yij
niji=— foro, =0
&
The coefficients of mutual influence are not frequently used in classical lamina-
tion theory, but are useful in relating out-of-plane shear strains to in-plane shear
and normal stresses. These relationships are generally presented in terms of coeffi-
cients of mutual influence and Chentsov coefficients. The Chentsov coefficients are
expressed as u;; i and characterize shearing strain in the { j-plane due to shearing
stress in the kf-plane. Mathematically, they are defined as
Vii
Hijki = =
Ykl
for 7; = 1, with all other stress components being zero. The Chentsov coefficients
are subject to the reciprocal relationship

Hijkt  Jkij
Gy Gij

The relationship between out-of-plane shear strains and in-plane stress components
for the 1-3 and 2-3 planes is

Mg M + gt
G

_ Mg+ a0 + piate
Gz

Similar representations can also be developed by solving equation (3.7) for strains
under conditions of plane stress. The most widely used relationship in equa-
tton (3.19) for apparent engineering constants is generally the one for E,, which
ts valuable in establishing material consiants.

i3

Y

Example 3.1. Consider the case of uniaxial tension shown in Figure E3.1-1. For
this problem the strain—stress relationship is

Ex En ?;2 §16 0
Ey ¢ =[Sz Sn S ag
Vxy Si6 52 Ses 0

£ = S1200 = [(S11 + 522 — Ses)m’n® + Sia(m®* + n*)jay

Therefore,

£y = 3220’0 = [S“?I4 + (282 + Se.g}mznz + Szzﬂ'l“]ﬂg

Yry = S2600 = [(2811 — 2812 — SeeImn’ — (287 — 282 — See)m’nlop

From these equations it is obvious that there is shear—extension coupling for any
angle of 8 other than 0° or 90°. Even under a simple uniaxial load, the deformation
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[+ 7N 1

L

Figure E3.1-1. Off-axis lamina.

will be similar to that of a state of stress including shear. Assume specimen dimen-
sions as shown in Figure E3.1-1, vp = 50 ksi, 8 = 45°, and material properties of
E; =25 x 10° psi, £;3 = 1 x 108 psi, G| = 0.5 x 10° psi, and v;; = 0.25. This
results in

s : 4x10% § 1 1 x10°¢
= —_— = = — = x
"= 2=

1
Siz=-vpS1 = ~1x107% §eg=—=2x10""°
G2

At 8 = 45°, sine and cosine terms are identical (m = n = (.707). Therefore,
£ = S1200 = [0.25(511 + S22 — Ses) + (0.25 + 0.25)8 200
=-245x 1077qy
£y = Spog = [0.258)) + 0.25(2512 + Ses) + 0.25852]0y
=1755% 10"y
Vay = S2600 = |0.25(281; — 2812 — Se6) — 0.25(283 — 2812 — Ses)loo
=-4.8 x 107 7gg

Since o9 = 50 ksi,

gy = ~0.01225 in/in g, = 0.03775 infin  y,, = —0.024 in/in

The displacement field is obtained from the definitions of axial and shear strain as
follows:

al ou
£y = —— — £, = — = —~0.01225 — U = —0.01225x + f{(y)
dx dx
av v
gy=— — &, = — =0.03775 — V = 0.03775y + g(x)
oy dy
3U+3V Fiy+ g'(x) 0.024
= — _— = —0.
Yy 3y ax ¥y Bix
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The functions f(y) and g(x) can be abitranily assumed in order to fit the anticipated
displacement field. Since the theory developed herein is for small deformations,
linear functions are assumed. Therefore,

fO=C1+Cry gxX)=Ci+ Cyx

Taking the partial derivative of each function with respect to its variable yields
S ¥y = C; and g'{x) = C4. Thus, according to the definition for shear strain,
C; + €4 = —0.024, This results in

U=-001225x+ Cy + Cy V =0.03775y+ C3 + Cyx

At the center of the plate (x = y = 0) the displacements must vanish, so that I/ =
V = 0. Using this condition we arrive at C; = C5 = 0. The rigid body rotations
are eliminated by the requirement that

E—ﬂ"-“O—% C.=C
ay n 2T

Thus, C; = C4 = —0.012, and the displacement fields become
U=-001225x - 0.012y V =0.03775y — 0.012x

An exaggerated plot of the deformed shape for fiber orientations of both 45° and
30° is shown in Figure E3.1-2. These plots illustrate the effects of shear—extension
coupling on the deformation. The actual deformation field which results depends
on applied loads, elastic properties of the material, and fiber orientation. This
dependency of load, material, and orientation extends from deformations to stress
analysis. In the case of laminates in which each ply can have a different fiber
orientation (or even be a different material), the coupling between load, material,
and orientation is even more pronounced.

N
\ ) \1‘./—

7/
%

|

)

Figure E3.1-2. Deformed shape for 8 = 45° and 30°.

»

Example 3.2. Assume the clamp shown in Figure E3.2-1 is constructed from a
unidirectional composite with elastic properties £} = 30.3 x 10° psi, E; = 2.8 x
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10® psi, G1, = 0.93 x 10° psi, and vy, = 0.21. The compressive force at points B
and C of the clamp is 1.5 kip, and screw ED can only expertence a tensile force.
For this problem we will establish the displacement field corresponding to point
F, located onr plane a—a of the clamp. Thermal and hygral effects are neglected.
The fiber orientation is defined in Figure E3.2-1.

Figure E3.2-1. Composite clamp assembly.

The loads acting on section a—a are established by defining an appropriate free-
body diagram (FBD). Two possible FBDs can be used, as shown in Figure E3.2-2:
one for portion AC of the clamp, or one for portion AB. In either case the unknown
tensile force in the screw must be determined.

1.5 kip

Portion AC Portiocn AB

Figure E3.2-2. Possible FBDs for the composite clamp.

Either FBD will work for defining the screw tension Fp, which is required to
define the loads at section a—a. The FBD for the upper portion of the clamp, in
which section a—a has been exposed and the intenal forces and moments acting
on it are correctly modeled, is shown in Figure E3.2-3. From this figure it is easy
to see that four unknowns exist. The normal and shear forces at a—a, as well as the
internal moment at a—a, and the screw tension Fp. Since there are four unknowns
for this 2-D model, the internal loads at section a—a cannot be established via the
methods of statics. Therefore, Fp must be determined. Arbitrarily using the FBD
for portion AB from Figure E3.2-2 the tensile force Fp can be defined by taking
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moments about point A

S " Ma=0=7(15)—3Fp — Fp =35 kip

From the FBD of Figure E3.2-3, the internal forces and moments at section a—a
can be established from

Y Fr=0=-V

Y Fy=0=N+15-35— N =20kip

ZM:():M+7(1.5)—3(3.5)—>M=0

1.5 kip
Figure E3.2-3. FBD for internal reactions af section a — a.

Since the interma! moment and shear on section a—a are both zero, the only stress
component to be considered is o,, which is easily defined by the compressive
force (M) divided by the cross-sectional area of the clamp

-20

J}' = m = —3.55 kSl

The state of stress at point F of the cross-section is shown in Figure E3.2-4. Due
to the loads on section a—a this state of stress would be identical for all points
along plane a—a. Furthermore, due to the geometry of the clamp, this state of stress
would exist at any point within the vertical section of the clamp, provided stress
concentrations due to fillets are neglected.

ayl /21

1

Figure E3.2-4. State of stress at point F of the composite clamp.

Having established the state of stress at point F, the resulting displacement field
can be defined. Since displacements are required, the compliance matrix relating
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strain to stress must be defined. The relationship between strain and stress is

Ex _ (0 512
{ £y } = [§] {ay} = q 8n ) (-3.55x 10%)
Vay 0 Sz

where the valuesﬁ of [S§] are determined from equation (3.16) to be §); =
—0.1328 x 1078, 533 = 0.2399 x 1075, and Sz = 0.2857 x 107, Therefore,

£ -0.1328 471.4
{ £y } = { 0.2399} x 1076(—3.55 x 10°) = { —851.6} win/in
Vay 0.2857 —1014.2

Using the procedures of the previous example, the displacement fields are found
o be

U=@d71.4r—507.1y) x 107% vV = (—=507.1x — 851.6y) x 107°

These numerical results would be different had another material and/or a different
fiber orientation been used. For example, a fiber orientation of & = +60°, instead

of —60° results in
Ey 471.4
{ £y } = { —851.6} uin/in
Vay 7 460 10142

Since only the shear term (S26) changes sign in going from --60° to +60°, y;,
is the only affected strain. This sign change is reflected in the displacement field,
which would be

Uyso = (471.4x + 507.1y) x 107% Vg0 = (~507.1x + 851.6y) x 107°

Example 3.3. Assume a 72-in diameter, closed-end pressure vessel is designed
to operate under an applied pressure of 100 psi. A unidirectional composite rein-
forcement is to be circumferentially wound around the vessel at selected intervals
along the span. Due to space limitations the reinforcement has a cross-sectional
area of 0.50 in?. The vessel is shown in Figure E3.3-1. Two materials are consid-
ered for the reinforcement, We wish to define the reinforcement spacing (s) as a
function of the arbitrary fiber orientation angle 6, assuming that the reinforcerments
sustain all forces typically expressed as the circumferential stress in the vessel. In
addition, the normal strain in the circumferentail direction is not allowed to exceed
6000 pinfin. The two materials selected have the following elastic properties

Property Material 1 Material 2
E, (10° psi) 303 829
E, (10° psi) 20.80 2.92
G2 (10° psi) 0.93 0.86
V2 0.21 0.26

A relationship between internal pressure, stress in the reinforcement, and its spacing
can be established using the FBD shown in Figure E3.3-2.
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Figure E3.3-2. FBD for reinforced pressure vessel,

The stress in the reinforcement is denoted as o,. The reinforcement is subjected
to the uniaxial state of stress depicted in Figure E3.3-2. The fiber orientation is
assumed to be arbitrary, and may be either positive or negative. Summation of
forces in the x-direction resulis in

Z Fy=0=20,(A) - P(6){(12)(s) = 20,(0.50) — 100(72)(s)

From this we establish the relationship between reinforcement stress and spacing
as g, = 7200s. There are two possible approaches to solving this problem. Either
by using the stiffness matrix or the compliance matrix and solving one of the
following sets of equations

a 6000 6000 T
{0}:[@]{ £y }xlﬂ—ﬁ or { £y }xlO_ﬁz[El{O}
0 Fxy Yy 0

A solution involving the stiffness matrix requires evaloation of £, and y,,. If
the compliance matrix is used, the solution is forthcoming without an interme-
diate determination of strains. This is a result of the constraint &, = 6000 pin/in.
Had a more rigerous constraint been involved, such as specific limits on g, and
¥y, the solution involving stiffness may have been more appropriate. Using the
compliance matrix we establish 6000 x 107¢ = §;,0, = §;;(7200s). Solving this
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equation for s,
8.33 x 1077
S=—

El]

Since only Sy, is involved in the solution, the sign of the fiber orientation in the
reinforcement does not influence the solution. This would not have been the case
if additional constraints on £, and y,, had been imposed, since shear-related terms
of both the compliance and stiffness matrices depend on the sign of the fiber-
orientation angle 6. An abbreviated table of fiber spacing, angle, and S, for each
material is presented below.

Angle (&) Material } Material 2
S1(x107%) s (in) S11(x107%) s (in)
0 0.033 25.20 0.121 6.90
30 0.239 3.47 0.295 2.82
45 0.363 2.29 0.391 2.13
60 0.402 2.07 0.406 2.05
90 0.357 2.33 0.343 243

These results are presented in graphical form in Figure E3.3-3. It is easy to see
that as the fiber angle increases either material can be used with approximately
the same reinforcement spacing. At smaller angles material 1 proves better (with
a larger required reinforcement spacing), since its stiffness in the 1-direction is
more that three times larger that that of material 2.

1 I I T T

- - Malerat 1 —
-Matenal 2

TE-_T*—*'T"TTW"T%
40 50 60 70 80 90

Reinforeement Spacing {in)

Fiber Qrieniation (degrees)

Figure E3.3-3. Reinforcement spacing as a function of fiber orientation.

3.3 Thermal and Hygral Behavior of Lamina

A lamina subjected to temperature and moisture changes will deform. The matrix
is generally more susceptible to thermal (temperature) and hygral (moisture} defor-
mations than the fiber. Neither constituent (fiber or matrix) is allowed to undergo
free thermal and/or hygral expansion, so their responses are coupled and the entire
lamina behaves orthotropically. Composites are often exposed to environments
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in which their temperature and moisture content vary with time. The variation
of temperature and moisture within an orthotropic lamina is direction depen-
dent. Assuming an arbitrary direction (x) within the lamina, basic thermodynamic
considerations define the flux as

K G

dx: = .
where ¢, is the flux (either thermal or moisture) per unit area per unit time in
the x-direction, K, is the thermal conductivity or moisture diffusion coefficient
in the x-direction, and 3G /8x 1s the gradient of temperature or moisture in the
x-direction. The quantities ¢, and &, are often given superscripts of T or A to
identify them as thermal or hygral parameters, respectively. The gradient G is
generaily replaced by either T or H, as appropriate. The thermal conductivity and
moisture diffusion coefficients in the matrix directions (2- and 3-directions) are
generally equal (KT = K7 and Kt = k). The governing equation for heat flow
is developed by an energy balance using the 1-dimensional model in Figure 3.8.

r.—h—h dx
\Q x g \\ qI"%dx
e\
\ N

—-dx"'—

Figure 3.8. One-dimensional heat flow model,

The increase in energy siored per unit time within the representative volume
element of Figure 3.8 is pc{dT/dt)dx, where ¢ is the specific heat, p the mass
density of the material, and 7 is time. A simple energy balance requires

34y _ (T oqT\ (T
q;l'_ [QI+ ( Bx)dx] —W(a‘)dxﬁ—(qx—) _pc(g)

Using the definition of g7 above yields dq! /8x = (3/8x) [-K T (8T /ax)]. If KT, p,

and ¢ are constant : ,
oT K, o°T
—_—= — 3.20

dx [m] (sz) 020

The K /pc term is the thermal diffusivity, and is a measure of the rate of tempe-
rature change within the material.
3.3.1 Thermai Stress-Strain Relationships

In considering the effect of temperature on the stresses and strains in a lamina, the
thermal conductivity and/or heat flux are not considered once the temperature has
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reached an equilibrium state (i.e., it has stabilized and is no longer increasing or
decreasing). Since a lamina (or laminate) is cured at a temperature that is generally
above the operating temperature, thermal stresses may be present in the lamina
prior to application of loads.

The general form of this stress—sirain relationship for a lamina in which tempe-
rature effects are considered was presented in Section 2.7 as

o = Q,‘j(&‘j —QJAT)

where «; is the coefficient of thermal expansion in the j-direction, and AT is
the temperature difference (T — T,) from the operating (T) to the stress free (or
curing} temperature (7',).

The coefficients of thermal expansion in a lamina are direction dependent, and
in the principal material directions are «,, a2, and «3. The subscripts denote the
material direction in which each coefficient is applicable. There is no shear coef-
ficient in the principal material direction due to thermal expansion since it is a
dilatational quantity associated with volume change. The stress-strain relation-
ship given by equation (3.5) must be appended to account for thermal expansion,
and is expressed as

o] On Oz s 0O 0 0 g - AT

72 @z @z @ 0O 0 O 82 — aa AT

oyl _ (@i Qu @ 0 0 0 £5 — 3 AT (3.21)
04 0 0 0 Oisa 0 0 ¥23 )

a5 0 0 0 0 Oss 0 Y13

Tg 0 0 0 0 0 Qﬁﬁ Y12

This relationship is valid only for on-axis configurations. In an off-axis config-
uration, the coefficients of thermal expansion are expressed in a different form,
Consider a lamina subjected to thermal strains in the principal material directions,
which are a;r = o; AT. Using the strain—transformation matrix in equation (2.2) the

relationship between thermal strains in the material and x— y coordinate systems is

£ T o Ex T
£2 a2 £y
€3 _ ) us _ £,
0 =140 AT =[T,] Yoo
0 0 Vi
0 0 Yxy

The thermal strains in the x- y coordinate system are expressed as

T

=[T.]"! AT

ccofl RE
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Computing [T}, and muliiplying through by each o; AT term, the thermal strains

in the x—y system are
T

£y o,
£y ay
£; o,
= AT
Vyz 0
Yz 0
Vay Oxy

where the coefficients of thermal expansion in the x—y system are

o, == m2a| + n2a2
o, = nloy + mia; (3.22)
o, = 03

oy = 2 mn{oy — o)
The term «,, is called the apparent coefficient of thermal expansion,

The stress—strain relationship for Cartesian components of stress and strain given
by equation (3.7) must be appended to account for thermal strains, and is

o —gu O O 0 0 Qg ] £y — 2, AT

oy gu gzz g:n 0 0 226 gy — oy AT

o\ _ Qi On 0O _0 _0 O3 & — o AT (3.23)
Ty 6 0 0 Qy Oy O Yy

Txz 0 0 0 Q5 Qs O Ve AT

Ty (@16 @ @i 0 0 Q] Yoy = Sy

For the case of plane stress, the on-axis in equation (3.21) and off-axis in equa-
tion (3.23) stress—strain relationships reduce to

Lo § Gy QOp 0O g ~ o AT
a3z = le sz 0 £y — cngT (324)
76 0 0 Qe Y12
for the on-axis representation, and for the off-axis representation
Ox gn an le € ~ & AT
O'y = le 222 226 Ey hand a'yAT (3.25)
Tay Qs O Uss Yiy — CuyAT

3.2.2 Hygral Effects

The equation for moisture diffusion is derived from a mass balance similar to
the energy balance for temperature. The moisture diffusion process applicable to
a variety of composite material systems is termed Fickian diffusion and follows
Fick’s law. In general, low temperatures and humid air promote Fickian diffusion,
while high temperatures and immersion in liquids cause deviations from it. The
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Fickian diffusion process is a reasonable approximation for many composites. The
moisture diffusion equation for a one-dimensional problem is

3 frr (M)} =
ax T ox ot

If K[;' is constant, this relationship reduces to Fick's law, given as

KH(Bz_H)_Bﬁ
*\ax2 /) &

Comparing thermal and hygral diffusion parameters (KM for hygral and K7 /pc for
thermal) shows the rates at which moisture and temperature change within a mate-
rial. Over a large range of temperatures and moisture concentrations encountered in
many composite materials applications, the two parameters can be approximately
related by KT /pc = 10°K2. In problems coupling temperature and moisture, the
lamina reaches thermal equilibrium before hygral equilibrium, and although no
temperature gradient exists, a moisture gradient may.

The moisture concentration is generally replaced by the specific moisture concen-
tration, defined as M = H/p. Using this definition of M to represent the hygral
term {H) in Fick’s law, it can be rewritten as

?*M M

H

—_— = 3.26

dx? ] (3.26)
The subscript x has been dropped from X, with the understanding that diffu-
sion occurs in the x-direction. The boundary conditions required to solve this
equation are

forO<x<h: M=M; a:=90
forx=0,x=h: M=M, fort>10

where # is the lamina thickness and 7 is time. The solution to equation (3.26) using
the boundary conditions just given is expressed as a series:

Mm—MQH ;

M - M, 43 1 (2j+ Dax _
1 Z e¥

- 327
1T g 3:27)

j=0
where
y = (2j + 1P kM0t
Mo = initial moisture content
M o = equilibrizm moisture content
The equilibrium moisture content is generally higher than the initial moisture

content for a moisture absorption test. The converse is true for moisture desorption,
and equation (3.27) is also valid for that case. In a typical moisture absorption
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test, specimens are subjected to specified relative humidities and temperatures and
frequent]ly weighed to determine moisture content. The average moisture content
M is defined in terms of the moisture content M as

gt
M=- | Md
h/o *

Substituting M from equation (3.27) into this equation and noting that M=Mgat
time ¢t =0, and M = M at time t = oo, yields

H—MU 8 — e”r
—_— =1~ —_— 3.28
M, — Mg n2§(2j+1)2 ( )

where y is defined as before. For large times ¢ this expression can be approximated
by the first term of the series as
M- M, _ 8 kM)

1l — —e”

m = JT2 (329)

For short times the approximation is given by an alternate expression from Tsai

and Hahn [5] as
M — Mg KK\
MMy~ i (350

In the initial phase of moisture absorption the moisture content changes as a simple
function of +/t/k% (where ¢ is time of exposure), while it bacomes an exponential
function at Jater times. The diffusion coefficient K" must be determined in order to
use either relationship. This coefficient is determined through moisture absorption
tests conducted over long periods of time. A schematic of a complete moisture
absorption test is shown in Figure 3.9, where moisture content is plotted against
Jt. The value of M is obtained by weighing specimens at various times during
the test. Using equation (3,30) and two different values of M in the linear region,
K" can be determined to be

=% () ()

16 \M,, — Mg I — 4

The diffusion coefficient can also be determined from the long-time approximation.
It is assumed that the tong-time absorption equation applies when the moisture
content has reached 50% of M. By setting (M — My)/(M — Mp) = 1/2 in the
long-time equation, the time to reach 50% of M, is determined, from which we
get KM = 0.048954% /1, 2.

The equilibrivm moisture content (M ) depends on environmental conditions and
can be expressed in terms of the relative humidity as

_ (Y
Mw"“(ﬁ)
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Figure 3.9, Determination of K" from M vs ./t data at temperature T,.

where ¢ is the relative humidity in percent, and a and b are experimentally deter-
mined material constants. The amount of data available regarding these constants
is limited, but approximate values of a and b for selected composite material
systems are found in Tsai and Habn [5] and Tsai [6]). The equilibrium moisture
content and the rate at which it is reached vary from material to material, and to
a large extent is controlled by the matrix. This is illustrated in Figure 3.10, which
shows a moisture absorption profile for graphite fibers in both epoxy and PEEK
[poly (ether ether ketone)] matrices at 95% RH and 160°F [7]. As seen here the
graphite/epoxy system reaches an equilibrium moisture content of 2.23%, while
the graphite/PEEK system has an equilibrium moisture content of only 0.15%.
Since the fiber is the same in both materials, one concludes that the matrix is
dominant in moisture absorption,

2‘5+IIIIIIIIP[III|Ir[rl]‘[fl]li[l[llTI'[l]ll'lll]‘l[ll]]?li'l[[lI+

20| e e—— )

15
-a- graphite/epoxy

1.0 -o- graphite/PEEK

Waeight Gain (%)

B e 9 Py T_______________qﬂ
ol Ll 1111'1[11‘:1[1‘1'1rllJ_lllljljlljl]illllTllll WS SR .

0 50 100 150 200 250 300 350 400 450 500 S50 600

a5

0.0

Time (hours)

Figure 3.10. Moisture absorption of graphite/epoxy and graphite/PEEK composites at
95% RH and 160°F (after [7]).

The previously established relationships for k¥ do not reflect the actual behavior
of the diffusion coefficient, which is highly dependent on temperature and can
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be represented by K" = KHe £/*7 where K} is a pre-exponential factor, £y is
activation energy, R is the pas constant [1.987 cal/(mol-K)], and T is temperature.
Both K and £,y are material properties. Most of the parameters considered in
the preceding discussion are obtained through experimental techniques. Springer
[8-10] is a good reference for further information regarding moisture diffusion
and the general effects of environment on composites. Tsai and Hahn [3] present
the moisture properties for a limited number of materials.

3.3.2.1 Hygral Stress—Strain Relationships

Stresses resulting from hygral effects are analogous to those due to thermal effects.
In order to assess hygral stresses, the hygral strains (sometimes termed swelling
strains) must be considered. Prolonged exposure to moisture results in a weight
gain and volume change for many composite materials. The weight gain is due to
moisture absorption. The corresponding volume change results in strains {swelling
strains) expressed in terms of the moisture content as

= M

where M is used in place of AM (moisture change) from equation (2.5). The
swelling coefficient § is direction dependent in the same manner as the thermal
expansion coefficient and is determined by a moisture absorption test of a unidi-
rectional composite of thickness A subjected 1o the same relative humidity ¢ on
both sides. Frequent measurements are made to determine the amount of swelling
as a function of moisture content. The stress—strain relationship applicable when
hygral effects are considered was given in Section 2.7 as

o, = (e, — B;M)

The hygral strains in both on-axis and off-axis configurations are

£y H B £ H ﬁx

&2 B Ey By

€3 — B M £; — B M
£4 0 Vyz 0

£s 0 ¥rz 0

€g 0 Yay ﬂxy

Only principal material directions are affected by moisture absorption in an on-
axis configuration. On-axis swelling strains can be transformed into off-axis strains
in the same manner as the thermal strains were. In the off-axis configuration the
swelling coefficients are

Be =m’By +n’p,

By =n’f1 +m’ By (3.31)
B:.=H

By = 2mn(f) — B)

where B, is termed the apparent coefficient.
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Hypgral strains are given in terms of M, which is a gradient. The time required
to reach equilibrium is slower for moisture than for temperature, so the moisture-
induced strains are more vanable through the thickness than thermal strains. In
order to eliminate the problem of defining a moisture gradient, we assume that
M can be replaced with the average moisture content M, obtainable from either
equations (3.29) or (3.30), as appropriate. Including moisture in the stress—strain
relationship for an on-axis configuration and appending equation (3.21) yields

a1 OQu @ Q3 0 0 O g — AT — BIM

o2 glz gzz 823 8 8 g g7 — 0y AT — BoM

g | __ 13 23 33 _ — AM

o (T10 0 0 0w 0 0 ||BT@LTAM G
o5 0O 0 0 0 @s O 13

g 0 0 0 0 0 Oes ¥z

For the off-axis configuration the appended form of equation (3.23) becomes

Ty g“ 212 913 0 0 glb £ — aIAT - ﬂIH
o, Qi Cn G 0 0 Oy gy — a,AT — B, M
o | _{Qs Un U 0 0 e, — o, AT — B, M
Ty, 0 0 0 Q4 Qs O Yy

Txz 0 0 0 Oy Os © Yu —
Ty 1O @ O 0 0 Qg | ‘ Vo™ % AT — M

{3.33)

For the special case of plane stress, the on-axis form of the stress—strain relation-
ship reduces to

oy gn Cn O £l o) By _
{0‘2}= |:Q|2 Gn O :| ({ £2 }—{ag}ﬂrf{ﬁz}M) (3.34)
O 0 0 Qs Y12 0 0

The off-axis form of the stress—strain relationship for plane stress is

o; gu ?12 glﬁ £x oy B
{ ay } =1CQi Un O ({ €y } - { ay }AT - { By }M) (3.35)
Try Qs O Ogs Yry Cxy Bry
In a state of free thermal and/or hygral expansion (or contraction) where {c} = 0,
the lamina strains (either on-axis or off-axis) can be represented as

{e) = {«}AT + (BIM

There are no stresses associated with this state of strain, since a stress is not
applied. Now consider the one-dimensional case shown in Figure 3.11. The rigid
walls impose a constraint on free expansion such that the overall deformation in
the y-direction is zero. This causes &, = 0, while &; and y,, may exist. In order
for the constraint of £, = 0 to be valid, a stress o, is imposed on the lamina by the
wall. This stress is the thermal (or hygral) stress and can be expressed in terms of
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aAT or BM from equation (3.35) by setting the normal strain £, = 0. The stress
components o, and t,, would be zero, since there are no constraints restricting
deformations associated with these stresses,

_——

— Y

—_——

. )

Frea thermal expansion

End constraints

Uy gy

Thermal strasses

Figure 3.11. Schematic of constraints producing one-dimensional thermal stresses.

Residual stresses from curing do not exist for flat lamina where only free thermal
expansion or contraction is possible. Individual lamina do not generally have
residual stresses from curing, but a laminate (composed of several lamina) does.
This results from the varying expansion coefficients through the thickness. Since
each lamina may have a different expansion coefficient, it wili not deform exactly
like an adjacent lamina. Because of compatibility between lamina, a deformation
constraint is placed on ecach lamina, resuiting in a stress.

Example 3.4. The composite reinforced pressure vessel considered in Example 3.3
is used to illustrate the effects of thermal and hygral strains on analysis. The rela-
tion between the normal stress in the composite reinforcement and spacing (o, =
7200s) defined in Example 3.3 is used again, as is the constraint £, < 6000 pin/in.
As before, two possible equations can be solved:

Oy gn §]2 Qlt’) 6000 x 10°° o B:Y
B[ E E( G
0 O O Ues Fxy By

Uyy
or

6000 x 1078 — @, AT — B, M S Si2 S| fo
£y — ayAT — B M =132z Su 3 { 0 }
Yay — Wy AT — »Bxyy Sis S Ses 0

As with Example 3.3, the second equation is selected since the state of stress
is explicitly defined and establishing e, and j., is not required. Therefore, the
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o

problem reduces to solving
6000 = 10_—6 — o, AT — ﬁxﬁ = gu(ﬂ'x) = 3”(72005)

o, and B, are functions of fiber orientation and are established from o, = ma; +
n’ay and B, = m’B, + n’B». For the two materials considered in Example 3.3, the
thermal and hygral coefficients of expansion are assumed to be

Material 1 Material 2
o) 3.4 x 107% in/in/°F 12.0 x 107% infin/°F
o2 5.0 x 107 infin/°F 8.0 x 107 infin/°F
B 0.0 0.0
B 0.20 0.40

The variation of o, and 8, with selected fiber angles f for each material are
tabulatad here,

Material 1 Material 2

d o, {pin/in/°F) B e, (pinfin/°F) B

0 3.40 0.00 5.00 0.00
30 7.05 0.05 6.60 0.10
45 10.70 0.10 8.50 0.20
60 14.40 0.15 10.25 0.30
90 18.00 0.20 12.00 0.40

For this problem it is assumed that AT = —280°F and the average moisture content

is M = 0.05. Manipulation of the governing equation for reinforcement spacing
results in .
= 833 x 1077 — 1.389 x 10" (o, AT + 8, M)

Sll

In this expression a,, 8., and S|, are functions of 6.

Individual contributions of thermal and hygral effects on the reinforcement spacing
are illustrated by separating them and examining one at a time. Figure E3.4-1
shows the effect of temperature compared to the solution for Example 3.3 for
both materials. The effects of AT = —280°F (and M = 0) increase the required
reinforcement spacing for each material considered.

The effects of moisture alone are presented in Figure E3.4-2 for M = 0.05 and
AT = 0, and are compared to the resvlts of Example 3.3. The negative reinforce-
ment spacing indicates that the constraint on g, has been violated. This does not
imply that no reinforcement is required, since the constraint on &, is an artificially
imposed failure criteria. The swelling strains produced from inclusion of hygral
effects will reduce the strain in the reinforcement.
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Figure E3.4-1. Effects of temperature on reinforcement spacing, M = 0.
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Figure E3.4-2. Effects of moisture on reinforcement spacing with AT = 0.
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Figure E3.4-3. Effects of AT and M on reinforcement spacing.

The combination of thermal and hygral effects on predicted reinforcement spacing
are shown in Figure E3.4-3. The originally predicted spacing from Example 3.3
is not presented in this figure. Thermal and hygral effects can influence the state
of stress in a composite, and have an effect on lamina failure.
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3.4 Prediction of Lamina Properties (Micromechanics)

Micromechanics considers the behavior of each constituent (fiber and matrix) as
it relates to the prediction of lamina properties. The properties of lamina deter-
mined from experimental procedures are macroscopic properties. They do not
reflect the interactions between fibers and matrix, nor do they offer insight into
possible improvements of material response. Early developments of microme-
chanics consisted of three types of formulations: strength of materials, elasticity,
and empirical, as summarized in Hashin [11, 12] and in Chamis and Sendeckyi
{13]. Strength of materials approximations are easy to formulate, but the assump-
tions used often violate strict elasticity formulations. The empirical approach is
generally a curve-fitting procedure that incorporates experimental data and either
elasticity or sirength of materials solutions to provide a set of lamina design equa-
tions.

The most widely used relationships between constituent properties and the macro-
scopic behavior of continuous fiber composites were developed prior to the 1980s,
These relationships, although adequate for predicting elastic moduli, are not suffi-
cient for the analysis of damage mechanics. In 1958, Kachanov [14] modeled the
creep characteristics of metals by introducing the effects of microcrack growth and
dislocations through the use of internal state variables. This provided the impetus
for the development of what has become known as continuum damage mechanics
(CDM) [15-17].

The discussions of micromechanics presented herein pertain to strength of mate-
dals models, discussions of elasticity solutions, and empirical relationships. The
simplest approach to determining lamina propertics is based on assuming that
each constituent material is homogeneous and isotropic. Consider a representative
volume element (RVE) of a lamina as shown in Figure 3.12. In this RVE three
distinct regions exist: fiber (given a subscript “f"), matrix (given a subscript "m™),
and voids (given a subscript “v"").

matrix

fiber

Figure 3.12. Representative volume element of a lamina.

The total mass (M) and volume (V) of the RVE are M =M;+ M, and V =
Vi+ Vi + V., respectively. Dividing the mass by total mass and volume by total
volume yields the mass and volume fractions, defined by

mi+my=1 m+uv,=1
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where my = M/M, my, = My, /M, vy =Vi/V, v, = Vo /V, v, =V, /V. These
represent the mass and volume fractions of matrix, fiber, and voids. The density
of the lamina can be expressed as

_ A_4 - oiVi+ omVm

v Vv = prts t Pm¥m

Introducing mass fractions results in vy being expressible as

Vi Mi/oe  p
Vi M/ip  p

Similar expressions for vy, etc., can be developed and used to show that

This expression can be used to determine the volume fraction of voids in a laming,
provided the mass fractions and densities of each constituent are known. Solving
for v,
Pt Pm

The volume fraction of fibers and matrix depends, to a large extent, on fiber
geometry and packing arrangement within a lamina. Assume, for example, circular
fibers of diameter d, contained in a matrix such that three possible RVEs can be
defined, as shown in Figure 3.13. Each packing arrangement — triangular, square,
and hexagonal — produces a different volume fraction of fibers. The fiber volume
fraction of the square array, for example, can be obtained by first assuming a unit
width into the plane, and dividing the total area of fiber contained within the RVE
by the area of the square. The area enclosed by the square RVE is Asquare = s°. The
area within this square that contains fibers is Agper = 7d>/4. The volume fraction
of fiber for this array as given in Gibson [18] is

Aﬁber Hdz
v = = —.
Agquare 457

For triangular and hexagonal arrays, a similar procedure results in

Triangular: v = nd’
B = /32

nd*
Hexagonal: vy = ————
SR W ¥

For each of these fiber arrays, the maximum volume fraction of fibers occurs
when d/s = 1. For this condition, the v¢ values for triangular, square, and hexag-
onal arrays are 0,907, (.785, and 0.605, respectively. These limnits should not be
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Figure 3.13. Triangular, square, and hexagonal fiber arrays.

expected in practice, since in most continuous fiber composiles the packing is
random and processing lowers the actual .

3.4.1 Mechanical Properties of Lamina

Various approaches to estimatng the mechanical response of lamina from consti-
tutive material behavior have evolved. They range in complexity from a sirmple
rule-of-mixtures approach to the more sophisticated concentric cylinders approach.
Between these extremcs are several estimation schemes based on experimental
observations and interpretations.

3.4.1.1 Strength of Materials Approach

In developing stress—strain relationships involving [Q] and Q). the material
properties used are often termed apparent and are generally established through
mechanical testing. It is useful to establish procedures for estimating apparent
properties by knowing the behavior of cach constituent. The strength of matenals
approach is straightforward and simple to formulate. Consider a section of
lamina as shown in Figure 3.14. Several possible RVEs are suitable for model
development. In order to simplify geometric interactions, the model used closely
resembles that of Figure 3.1dc.

Figure 3.14. Possible lamina RVE configurations.
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Two conditions can be applied to determine mechanical response in the fiber direc-
tion: constant stress or constant strain. Constant strain requires uniform displace-
ments (Figure 3.15). This resulis in the fiber and matrix experiencing the same
strain, with the stress distribution in the lamina as shown. A uniform displacement
requires £ = &g = £, and since fibers and matrix are assumed to be isotropic and
homogeneous, oy = Efe and o, = Epe. Conversely, if a constant {uniform) stress
test is conducted as shown in Figure 3.15, the resulting strain distribution is as
indicated in the figure, since g5 = oy/Ef and ey, = 6p/En.

, NN

constant strain (uniform displacement) uniform stress

A G0

—y

Em

Ef

/A
IS IS IS
I LIS

Figure 3.15. Constant strain and stress models.

Since the interface between fiber and matrix is assumed to be a perfect bond,
& = €. Therefore, the constant (uniform) strain approximation is closer to the
actual physical conditions than the constant (uniform) stress condition for estab-
lishing material behavior in the fiber direction. There are cases when constant
stress conditions are more appropriate. The constant strain model is sometimes
termed the Voigt model, while the constant stress model is the Reuss model.

Assume the lamina is be modeled as shown in Figure 3.16, with length L, width
W, and a unit thickness. In establishing the material properties in each direction,
both constituent materials are assumed to be isotropic, homogeneous, and linear
elastic, with elastic constants Ey, v, Gy and E,, vy, Ga.

Figure 3.16. Lamina model for determining elastic moduli.

Determination of £, The model shown in Figure 3.17 is used to determine E,.
Based on previous discussions, the uniform strain model is an appropriate one for
approximating £,. The strains in the fiber and matrix are related by &\ = ¢ = &.
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Figure 3.17. RVE for determination of E,.

The stress in the fiber direction is approximated as

Resultant Force
(J’l = —-—
Area

Considering the stress in both the fiber and matrix as contributors to the total stress
yields

_af(hf)(l)+ai“(hm)m_af B om_tm
et k)Y et hn At b

Since the lamina thickness is unity, and both fiber and matrix are the same length,
the volume fractions of fiber and matrix are expressed in terms of A#; and Ay, as

hy him
= —— and Um =
he + hy i + hy,

vr

These expressions for volume fractions are applicable only to this model. Another
model may result in different forms of v and vy,,. Using volume fractions, the stress
is expressed as o] = G{Uf + o"tm. Since a{ = Ergr = Egg, and o = Epen =
E e, the stress can be written as a; = (Ervy + Eqvy )2, which can be expressed as

E ="t
£
where
Ey=Epme + Eqvn (3.36)

Equation (3.36) is known as the rule of mixtures and is a fairly accurate approxi-
mation of E;.

Determination of E;. To determine E-, the RVE shown in Figure 3.18 is used. An
appropriate first approximation to model the mechanical response in the 2-direction
is the constant stress (Reuss) model, as shown in Figure 3.19.

The stress in both fiber and matrix are the same in the constant (uniform) siress
model. Since the moduli of each constituent is different, the strain will not be
equal in the fiber and matrix. The stress and strain in the 2-direction for both the
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Figure 3.18. RVE for determining E,.

€ = constant o = constant

A7 TN

LS S 24 £ ¥ & N
AE‘ | % | A (A A A / \
=] o |
= —~—1 | T

N

=SSN =N A\ Ve

¢ B s

of #ef 60 =0f =} e

Figure 3.19. Constant stress and strain models for determining Ea.

fiber and matrix are related by

f m
(% m_ %2
Ez_Ef =

m

The deformation under conditions of constant stress is expected to resemble that
shown in Figure 3.20. The strain in the 2-direction is simply expressed as

Ah Ah
Eq = — =
: h hf+hm
2
F____jf'"_“—ﬁ AN
| 3
hy + hy,

-—h

Figure 3.20. Deformations of RVE for E; under constant siress conditions.

where

by hm
Ah=¢lh Thy = — + —
&he + €31, (Ef+Em)UO
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The strain in the 2-direction is therefore

Ah (hf+hm) ap (U{+Um)
o= — = — _— = — — | o
2T E; Em/ hi+hnm \E En/) '

Since Eq = ag/ez,

E; = _ EiEwm (3.37)
Enve + Esvn

Determination of Gy;. In a manner analogous to the previous two derivations, the
shear modulus can be established by counsidering a free-body diagram as shown in
Figure 3.21. From this it is obvious that the stresses are related by i, = o} = 113.
The shear strains for both fiber and matrix are a function of the shear modulus
for each constituent, with y{, = 1{,/G¢ and y% = 17} /Gp. The shear strain in the
matrix does not equal that in the fiber. The shear deformation is

A
hf+hm

Yiz =

where
A = keyl, + hay(

Using the definitions of shear strain and A presented earlier, the shear stress—strain
relationship is
vy Um
==+ —]12
& (Gf Gm) ‘

Since 113 = G212, the expression for G2 is

GG
Gy = —20m 3.38
2T G + tmGr (3.38)

T12 r
[
!
1

Figure 3.21. FBD and deformations of determination of Gi.

Determination of vy3. A similar procedure is used in determining Poisson’s ratio.
Instead of considering the applicability of either a uniform stress or strain, displace-
ments must be considered. Using the RVE in Figure 3.22, and the definition
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Figure 3.22. RVE for determination of vy;.

VTT _____________ __ _*AWIQ
i

the lateral displacement of the model and each constituent are related by AW =
—~Wey = Wupep = Apw + Ay The lateral displacement of the matrix is A, =
ApEmw = —hnvner. Additionally, Ay, = vy (A + b)) = v W, Therefore, Ag, =
—Wougvmer, and Agp, = —Wuorvge, which leads to AW = —We | (vsvf + vimtn).
Since vi; = (AW /W), the expression for Poisson’s ratio is

Viz = %ly + UmVm (3.39)

Example 3.5. Assume a chopped fiber reinforced lamina can be modeled as shown
in Figure E3.5-1. Further, assume both the fiber and matrix are isotropic and homo-
geneous, with elastic constants Ey, Gy, vy, and E,, Gy, vy,. We wish to estimate
the elastic constants £, and E,.

/ N :
I 4

Figure E3.5-1. Rule of mixtures model of a chopped fiber lamina.

In order to determine £, and E; an appropriate representative volume element
(RVE) must be selected. For the purpose of illustration, the one shown in
Figure E3.5-2 is used.

In order to determine the elastic moduli, two different materials are considered.
Material A is orthotropic and material B is isotropic, since it consists of matrix
only. Each material is considered separately, then combined into one material.
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1

L

materal A matariat B
Figure E3.5-2. RVE for determination of E, and E;.
Material B. Since material B is isotropic, its elastic moduli in the i- and 2-
directions are the moduolus of the matnx.
B B
Ef =E; =En

Material A. Two directions are considered for material A. From Figure E3.5-3,
each direction is modeled differently.

. W

en—

Figure E3.5-3. Model of material A.

x| -direction. The constant stress model is appropriate for this direction. There-

fore,
Gy 7
s‘; == &f=—
E¢ En
— PPN AL
The strain in the l-direction is expressed as £; = i
I m

where AL = s{(!;) + e7'(In ). By defining the terms Ly = I1/{{; + In) and Ly, =
{m/ s+ L), the strain can be written as

L Lm)
f= (Ef + Em i
From this it follows directly that for material A,
EA - EfE
' Bl + Emls

xz-direction. The constant strain model is most applicable in this direction.
Therefore, the strains and stresses in each constituent matenial are expressed
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as 55 =& = g3, a{ = Efsg, and o' = EneT. The stress in the 2-direction is
expressed as

f 1]
0 = %?—([m) = a3Le) + 07 (Lm) = (Eels + Ewlm)e:

From this it follows directly that EY = E¢Lt 4+ Eqlm-

Combined material. After determining the material properties in each direction
for both models, we combine them into one model. If both materials are combined
as shown in Figure E3.5-4, one can identify the model (constant stress or strain)
most applicable for each direction,

. u
o Q I+
-7

lq—hr-.-q— hm —-—l

Figure E3.5-4. Model for combined material.

xy-direction. The constant strain model is appropriate in this direction. The
procedure followed is identical to that previously described, and explicit details
are eliminated. A new notation is introduced and is applied in conjunction with
the definitions for L and L. The new notation is

hf hm

Hi = H. =
"7 e+ b ™7 e+ o

The stress in the 1-direction is oy = o (Hs) + o (H ) = (ERNH s + EnH n)e1.
Using this definition of stress and the previously determined expression for
EP, it is obvious that

EsEH;
E, =E*H;+EHy,=———"2"1_ 4 E H
L= Eilp + EqLy " "

xz-direction. The constant stress model is used for this direction. Following
the same procedures as before, the strain is

Hf + Hm
g={-g+--—]0
2 EEA Em 2
From this expression it is easy to show that

EgEm (Efo"'EmLm)Em

E; = =
T EM o+ EqHy  (Eilg+ Enlg)Hm + EnHs
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Neither of these expressions contain the classical form of the volume fractions as
introduced in this section. The volume fractions for the fiber and matrix can be
expressed using the definition of volume fraction. For the chopped fiber composite
of this example, they are

. {ehy
Fiber: v = =H
R Y/ Sk
i+ Lo + Lk
Mam‘xzum=(‘+ '“)“”L“‘f—Hm+HfLm=1—uf

I+ 1)+ h)

The model selected to represeni the chopped fiber composite in this example was
not the only possibility. An alternative is shown in Figure E3.5-5. The procedure
for finding E, and £2 does not change.

+

material B

Figure E3.5-5. Alternate model for chopped fiber lamina.

3.4.1.2 Modifications of Ea Approximations

The approximations for E; are less accurate than for E. It is fairly well established
[19, 20] that by considering strain energy, upper and lower bounds of E; can be
determined and expressed by

EsE
vk + vnkEg 2 E; > ﬁ
m mVf

This shows that the constant strain model represents an upper bound, and the
constant stress model a lower bound on the actual modulus in either the 1- or
2-directions, as illustrated in Figure 3.23. The actual value of E is between the
two solutions. Equations (3.36) and (3.39) generally tend to overestimate E, and
vy2, while underestimates of E» and Gy are given by equations (3.37) and (3.38).

A reason for the underestimation of E; can be seen by considering the actual
displacements that occur in developing the expression for E;. Following the proce-
dures of Tsai and Hahn[5], consider the deformed shape of the uniformly siressed
RVE in Figure 3.24, which includes the effect of Poisson’s ratio along edges AB
and CD. The strains and stresses in the fiber and matrix are more accurately
expressed as

£y = £fy = Emy = CONStant = ¢ g, = 0y = Oty = Oy
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Figure 3.23. Upper and lower bounds on elastic moduli.
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Figure 3.24. RVE for determination of E; including Poisson’s ratio.

Using conventional stress—strain relations for isotropic materials, the constituent
matenals experience stresses and strains which are

. Lof Ve o Tfy vr o e e T Vi o c
*TOE Ef T Ef Ky En  En
Ty V¥ ag Vg ¢h)] Vi,
Efy= =" — =0 == — =0 =€ Emy="7""— = Om

Ei E T E K

The strain in the x-direction can be written as &, = (7, — v,0,)/E,. Since o, =0,
£: = ¢ = — V0, /E;, asolution for ¢ can be found and the stresses in the x-direction
for both fibers and matrix expressed in terms of the applied stress oy as

E vp — Eyvy _ Eqm - Envy

Ofx = ———F— 0o Omx = E
x

ag
£,

The modulus E; is £; = ag/e,, where &, = wery + vmémy. Substitution of the
relationships for E, and v, from equations (3.36) and (3.39) yields

1 ¥ Um VEEm/Er + V2 E(/Eq — 250y
U,
E; Es En viEr + vk

(3.40)

This approximation works well for £, but not for G 3.
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3.4.1.3 Semiempirical Estimates of E and G,

Tsai and Hahn [5] present a semiempirical approach to estimating E; and )2
which requires experimental data. They argue that since the matrix is sofier than
the fiber, it is assumed that the stress carried by the matrix in both tension and
shear is a ratio of that carried by the fiber and is expressed as

Omy = NyGry, O <y <1
Oms = 0505 O <7 < 1
where the subscript s refers to shear. The normal stress in the y-direction is
00 = 0y = Uiyt + UmGym = ViOyf + UmnyTye = (U5 + UmhyI0ye
Therefore,

ag

o —-_——_—_—
¥
U1+ tmNy

The strain in the y-direction of the composite is

U, m
vt tm Ug NyUm E; En
£y = UEyt + UmEym = — O + —Oym = | — + 2 oy = — "R g
¥ UFE yf Um €y Ef ¥i Em ym (Ef Em) ¥ ’Uer‘UmY}}- 0
Since £, = ao/E,,
Yo u/Ert vmny/En G.41)
Ez Ey 'Uf+'Umn_‘.
In a similar manner,
! G 'mNs/Gm
_ vt/ Gt + vmns/ (3.42)

Gz vf + Ums

These equations provide better estimates of elastic moduli than the simple rule-
of-mixtures equations (3.37) and (3.38). When », and n; are set 10 unity, equa-
tions (3.37) and (3.38) are recovered. The n parameters are useful in correlating
experimental data. Data from Tsai [21] is used to show the relationship between
equations {3.40) and (3.41) in Figure 3.25 for several » values. The material prop-
erties used in these plots are Er = 73.1 Gpa (10.6 x 10° psi), Eqm = 3.45 Gpa (0.5
x 10°psi), vp = 0.22, and v, = 0.35.

Figure 3.25 shows how » can be used to model a specific modulus from experi-
mental data. The value of # that produces the closest correlation for this matertal
may not be the appropriate value for a difterent material. Similarly, the » that
provides the best correlation for £; may not be appropriate for Gs.

The usefulness of 5 in predicting G2 can be seen in Figure 3.26, where data from
Noyes and Jones [22] is shown with predictions from equation (3.42). The material
properties for the example of Figure 3.26 are G; = 30.2 Gpa (4.38 x 10° psi) and
Gm = 1.8 Gpa (0.26 x 10° psi).
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Figure 3.25. Correlation of equations (3.40) and (3.41) with data from Tsai {21].
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Figure 3.26. Correlation of G,; from equation (3.42) with data from Noyes and Jones
f22].

Table 3.1. Summary formulas for predicting composite
moduli (after [5]).
P oPr + Py

v + qm
Engineering P Pr P n
Constant

E| E, Ey Em 1
viz V12 Vr Ve 1
Ea VE; 11E; VEm ns
ky Vk, 1/ke 1k '
G2 /Gy /Gy G nG

The equations presented here were put in a general form by Tsai and Hahn [5]
and are summarized in Table 3.1.
3.4.1.4 Elasticity Solutions with Contiguity

Contiguity was introduced by Tsai [21] as a method of making sense out of exper-
imental data in comparison to theoretical predictions, and is based on fiber spacing
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and arrangement. The contiguity factor, C, has a range of 0 < € < 1 corresponding
to the cases illustrated in Figure 3.27. Either none of the fibers contact adjacent
fibers (C = 0), or all fibers contact adjacent fibers (C = 1). Additional elastic
constants, based on assuming each constituent is elastic and isotropic, are

El' Ey Em Em
Ki=o——— Gi=g—— Kn=5—""— Gp=5—"—
2(1 —vp) 201 + v) 201 — vy 21 + vy)
C = 0; isolated fibers, C = 1; isolated matrix,
contiguous rnatrix contiguous fibers

Figure 3.27. Models for extremes in contiguity factor C.

In general the contiguity factor does not affect E;. It is generally assumed that
fibers are both continuous and straight. During processing, the fibers within a
lamina may become somewhat curved. They may alse become nested within fibers
from an adjacent ply. In order to account for this possibility, and to provide a
better correlation between theory and experiment, the misalignment factor & was
introduced. The resulting expression for E, is

E\ = kEws+ Eqvn) (3.43)

where 0.9 < k < 1.0. The remaining elastic constants can similarly be defined.
These expressions, which include the contiguity factor C, are

Ey =A"[(1 — CYB* + CC*] (3.44)
V2 = (1 —C)D* +CE* f345)
Gip=(1-C)F" +CG” (3.46)

where the constants A* through G* are given as

A* =21 — vp + vy (vr — v )]
B — Ki(2ZKm + Gn) = Gm (K5~ Kip)vm

CKy + Go) + 2(K5 — Ky v
c* = Ke(2Kn + Gg) + Ge{Km — Ke)vnm

(2Km + Gr) — 2(Kq — Kf)um
_ Kovi(2K o + Grdvs + K (2K + G o
T Ke2Km 4+ Gn) - GnlKt - Kt
Kovm(2K¢ + Gi)vm + Kevi(2K + Gy

Ki(2Km + Gp) + Gi(Ky — Kyl

»

‘_




Www.iran—-mav ad.com

34 Lamimar Composies o o0 5 Lomiils x> s

Gnl2Gt — (G — Gp)vn]
2Gm + (Gt — Gl
G = Gel(Gs + G) ~ (Gt — Gy )]
{Gr + On) + (Gr — Grivn

t_

These approximations do not generally yield better results than previous cases
considered, and typically represent bounds on the true modulus.

3.4.1.5 Halpin-Tsai Equations

The Halpin—Tsai equations [23] are an interpolative procedure for approximating
elastic meduli and Poisson’s ratio. They are considered to be accurate for many
cases and are

E, = Emp+ Eqvn (3.47)
V12 = Urtf + VipUn (3.48)
M 1+ Enuy
— =R 4
M, 1 — nue (3-49)
where
MMy~ 1

= 3.50
T MM+ E ©-30)

In these equations M = composite modulus (E3, Gz, or vy3), M¢ = fiber modulus
(Eg, Gy, vi), and M, = matrix modulus (E,,, Gy, vy ). The parameter £ is a measure
of fiber reinforcement ir the composite and depends on various conditions such as
loading and fiber and packing geometries. The value of £ is obtained by comparing
equations (3.49) and (3.50) with exact elasticity solutions and is not constant for a
given material. it may change values depending upon the modulus being evaluated.
The upper and lower limits imposed on £ are 0 < & < oo. If § = {), the lower bound
solution for modulus is obtained and
1 vr Um

MM M,

For £ = oo, the upper bound solution for modulus is obtained and M = My +
M V. The limiting valves of n are

1 rigid inclusion
n= { 0 homogeneous material
-1/t voids

Results from the Halpin—Tsai equations show acceptable correlation to actual
data {23] for certain values of £ as shown in Figure 3.28. As in the case of approx-
imations to E; from equation (3.41), the accuracy of correlation depends on the
composite parameter being evaluated. The value of £ giving the best correlation
for £; may not be the same for G ;. Determination of an appropriate value for &
requires fitting experimental data to the theoretical predictions.
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Figure 3.28. Correlation of E; from equation (3.42) with data from Halpin and Tsai [23].

3.4.1.6 Additional Techniques

The techniques already presented for predicting mechanical properties of lamina
do not constitute the entire range of possible models. Predictions of E; and v,
are generally less model dependent than predictions of E; and G,;. Classical
approaches to micromechanics modeling consider constituent properties (E;, Eq.
vr, etc.) and volume fractions (vy and vy,). With the exception of contiguity consid-
erations, these models do not account for the fiber packing geometry, which can
influence the predicted properties. Charmis (24, 25] has developed a set of relation-
ships that incorporate fiber spacing as part of the model and predict mechanical,
thermal, and hygral properties. The model is based on an assumed square array
of fiber packing, in which interfiber spacing (8), fiber diameter (dy), ply thickness
(1p), and RVE cell size (5) are incorporated into the model, as schematically shown
in Figure 3.29. In this model the number of fibers through the ply thickness can
be used to estimate fiber volume fraction (vs). For a square array of fibers it has
been established that the cell size is related to vr and d by
df w

5 _
2 v

&2

1'
oS
-

Figure 3.29. Geometric relationships for unified model (after Chamis [24]),
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Using this relationship, the number of fibers (Ny) through the lamina can be easily
estimated from

4
Ne= 2 (3.51)
5
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Relationships between volume fractions, constituent densities (o, o), and weight
ratios (A, Ap) are useful in estimating intermediate relationships. Constituent densi-

ties are usually available from material suppliers, and volume fractions can be
experimentally determined. The relations just cited are expressed as

v+t o, =1 At An=1

oy = —— o= — (3.52)
1+p—“’(——1) 1+ﬁ(——1)
Pf \Am Pm \ A
The relationships developed by Chamis [25] treat the mairix as isotropic and homo-
geneous, where Ep, Gy, and vy, are related by G = E/2(1 + vy). The fibers
are assumed to have direction dependency. The longitudinal and transverse elastic
moduli for the fibers are defined as Efy; and Ejyz;. Similarly, longitudinal and trans-
verse shear moduli and Poisson’s ratio are expressed as Gz, Grys, V2, and vezs.

The micromechanics relations between constituent properties, volume fractions,
and composite properties in Chamis [24] are

Ey = vEn + vmEm V12 = Uiz + UnVm
E G
E;=E;= i E Giz=Gi3= u G (3.53)
1— S 1 — '“) 1— v(l——m)

\/_f( Emn v Gita

G E
Gy = m = Poy = % -1

1 - ﬁ? (1 _ _E_) 23
Graa

Aside from the /¥ in some of these expressions, the major notable difference
between them and previously developed relations is that the fiber is treated as an
orthotropic material with direction-dependent material properties.

Material properties for various fibers and matrices are cited in Chamis [24] and
are reproduced herein for convenience in using equation (3.53). Table 3.2 presents
pertinent properties for selected fibers, while Table 3.3 presents properties for
selected matrix materials. This is only a partial list of properties for available
fibers and matrices.

Table 3.2. Selected fiber properties {(after Chamis [24]).
Moduli (psi x 10°)

Material Np dp {pin) Em En; Gz G vn vy
Boron 1 560 58.0 58.0 242 242 0.20 0.20
0 0
Hms 10,000 300 550 0.9 1.10 0.70 0.20 0.25
AS 10,000 300 31.0 2.0 2.00 0.80 Q.20 0.25
T30 3,000 300 320 2.0 1.30 0.70 0.20 0.25
Kevlar 580 460 22.0 0.6 042 0.22 .35 0.35
S-Glass 204 360 12.4 124 5.17 5.17 .20 0.20

E-Glass 204 360 10.6 10.6 437 437 022 0.22
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Table 3.3. Selected matrix properties (after {24]).

Material En(psi x 10%) Gm(psi x 10%) Ve
LM 0.32 0.112 0.43
IMLS 0.50 0.177 0.41
IMHS 0.50 0.185 0.35
MH 0.75 0.278 0.35
Polyimide 0.50 0.185 0.35
PMR 0.47 0.173 0.36

Hopkins and Chamis [26] developed a procedure similar to that defined in
Chamis [24] for high-temperature metal matrix composites. The equations are
derived from a mechanics of materials formulation, where a single fiber {in a
square array) is assumed to be surrounded by an interphase region (to account for
chemical reactions which commonly occur between fiber and matrix), and matrix,
as shown in Figure 3.30. The fiber, interphase, and matrix regions are assumed to
be transversely isotropic (isotropic behavior in the 2—3 plane is assumed). Each
modulus is defined from a model of either constant strain or constant stress. The
sizes of fiber, interphase, and matrix regions (sf, 54, and sy, respectively) are
such that we can define s; = d/7/3, 54 = (dy — d)/7/4. and sy, = 5 - dp/T/4,

where s = d./m/4v;.
z Matrix
Eterphase

A
————— — — —}~—— Fiber
B
/ Cc
- —B —] | ]
Subregions of l— A
interlaminar bt
nonuniformity I 2

-—— dy ——»

Figure 3.30. RVE of square fiber subregions (after Hopkins and Chamis [26]).

For a uniaxial load in the transverse direction (2-direction in Figure 3.30), and
neglecting Poisson’s ratio, the displacement compatibility of subregion C is s&; =
S{Ef + S84 + SmEm- A force balance for equilibrium requires o3 = oy = 04 = o
and leads to a definition of E; for region C of

£ = Fn

o)+ () () + () (3)



Www.iran—-mav ad.com

g8 Laminar Composites oo o oige o L=l x> o

Introducing the values for s¢, sp, etc., results in
En

A E @)

By setting d/dy = 0, the equivalent modulus for subregion B is obtained. The
moduius for subregion A is E; therefore, the effective modulus in the 2-direction
is defined by allowing a combination of moduli such that E,s = Egsr + E8sq +
E2 Sm. This results in E2 being

ES =

Jusll = (d/do)]
1 — ,ﬁ)—{] - (Em/Ed)]

Jurld/dy) }
e VUil = {1 — (d/dg){En/Eq) — (d/do)(En/E4))

Following similar procedures, one can develop the additional relationships between
predicted moduli and constituent moduli for other lamina directions. Using the
notation that subscripts 4, f, and m refer to interphase, fiber, and matrix, respec-
tively, and that each modulus may be direction dependent leads to the complete set
of high temperature metal matrix composite micromechanics relations for mechan-
ical properties given in Hopkins and Chamis {26]:

E\ = vnEmit + e[l — (@/dy) )Ean + (d/dy) En)
Sl — (d/dy)]
— Sl = (Emna/Eqn)]
Jurtd /do) }

1 — Sl ~ {1 — (d/do Y Emn/Ean) — (d/deEnz2/Ern))
(3.54)

Ez=Em{(1 — )+

E,=E;= mZZ{(l_Uf)+ 1

Sl — (dfdy)]
t— /vl — (G2 /Gaa 1
Jve(d/dy) }
I — ol ~ {1 ~ (d/dp)N(Cmi2/Ga12) — (d/do X Gmi12/Gri2)]

Sl = @/do)]
G G 1 - ./ v
2 = L2y {( VIt R = (G /G

Jueld/do) }
1 = Jull = {1 = (d/dp)}(Gmz3/Gaz3) — (d/do)(Gmz3/Gia))

vy = Vi3 = vvmi2 + v { [| — (@d/do)’] vaiz + (d/do) ver

3 = ( Ex ) —1
? 2Gy

Although one may attempt to use these in correlating modulus predictions from
equation (3.54) to those of the other procedures, some difficulties arise. For

Giz=0Gnin =Gz {(1 — V) +

+
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example, defining the actual interphase zone size (dp) or the elastic moduli
associated with it is not a well-established procedure. Therefore, it is generally
more convenient to express equation (3.54) in a form more compatible with other
procedures. In doing this, it is first assumed that d/dp = 1.0, and the matrix is
isotropic with £, = En = Em. G = Gz = Gy, and vz = vy, Similarly,
the interphase properties become the fiber properties, so that E4;; = Epy, etc.
Using these assumptions leads to

Ey = vmEm + v»Em

L E )
Er=FE;=F, | —
2=5 {( VOO T e - EayEny)

G =G6G;3=0Cn {(1 - S+ = \/13?(1\/—1)—{6 /an)} (3.55)
NG }
G =Gy 1 — +
= {( VOO T i)

Viz = V3 = UmVm + UV
V3 = Ez 1
n=l—=-
2G

The expressions in equation (3.55) are similar to those defined in equation (3.53)
and yield similar results.

An additional micromechanical model, which takes the form of the Halpin-Tsai
relationships, has been developed by Spencer [27] for estimating £5 and G2. The
model is developed based on a square array of fibers and includes the effects of
strain concentrations at points of minimum clearance between fibers in the RVE.
Spencer assumed that only the matrix is isotropic and homogeneous. The fiber
separation, expressed as y (where y = 5/d and should not be confused with shear
strain), can be established for three packing arrangements (triangular, square, and
hexagonal). Each packing arrangement results in a different numerical relation-
ship between y and the fiber volume fraction v, which is expressed as an index
{I), given as I = 1/(y’vr). These indexes are identical to those developed at the
beginning of Section 3.4 and are 1.103, 1.272, and 1.654 for tniangular, square,
and hexagonal packing arrangements, respectively. Although each of these resuits
in a different variation of y with v, Spencer has approximated all three arrange-
ments by defining a modified index as / = 1.1 — 2,12 + 2.2. Using this index,
¥ becomes

1
:|/=
V(L10? — 20u+ 2.2

(3.56)

The semiempirical relationship developed in Spencer [27] for predicting elastic
modulus 15

% — y_—l + l (__E + _23/_[3“*1 M) (3.57)

Y K\ 2 yr—k? y—k
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where M is the composite modulus (either £7 or Gy2), M is the appropriate matrix
modulus {either £, or &), and

En

1 &m
_ En
k= G

] — =2

G2

These expressions, although not correlated with experimental data in Spencer [27],
are considered to provide accurate approximations to E; and ;2. Numerical prob-
lems arise for special cases in which & = y, and the approximation is no longer
valid. Expressions for E| and v; were not developed since it is commonly felt
that existing expressions provide sufficient accuracy for most applications.

3.4.1.7 Predictive Technique Summary

From these discussions it is obvious that no single model or procedure exists that
can be classified as the best approximation. Simple rule-of-mixtures approxima-
tions for E| and v;; based on strength-of-materials techniques are generally reliable
for the range of fiber volume fractions typically encountered. The prediction of E;
and &,; are not as reliable.

Each of the relationships presented in the previcus section is based on a microme-
chanical model developed from the study of interacting periodic cells. Two-phase
cells have been the primary focus, but a three-phase cell model for metal matrix
composites has also been presented, which can be degraded to a two-phase model
when required. The text by Aboudi [28] is dedicated to the study of a unified
approach to micromechanics focusing on periodic cell models. Elastic as well as
nonelastic constituents (e.g., viscoelastic, elastoplastic, and nonlinear elastic) are
discussed. In addition, a comprehensive reference for micromechanical models
of continuous, particulate, and discontinuous fiber composites is available [29].
Included in this work are models for viscoelastic response and transport properties.

Example 3.6. This example presents a comparison of predicted moduli from
several procedures. Assume the material is S-glass fibers in a PMR matrix with
material properties defined in Tables 3.2 and 3.3. The largest variation in predicted
moduli between the procedures considered is in E; and €);. For the purpose
of discussion, only E; is considered. The five relationships between E;, volume
fractions, and constituent moduli given in equations (3.37), (3.40), (3.53), (3.55),
and (3.57) are considered. The first four can be numerically summarized in terms
of the constituent volume fractions and elastic moduli from Tables 3.2 and 3.3 as

Equation Number Relationship
_ 5.83 "
~ 047y + 12.4vn

1 v tm 3.28
4 S L . . . VT &
(3.40) £, { 124 T 047 " 2 + 0.47vm} x 10

(3.37) E, 108
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(3.53 E; = 0.47 x 10°
33) 1T 120962 /o
VUt ] 6
. =0, - —~ %10
(3.55) E; =047 [{1 — /70 + 0562 X

The remaining equation, (3.57), requires an intermediate calculation using equa-
tion (3.56). The numerical value of k is k = 0.962, and y varies with volume
fraction. For a fiber volume fraction of 0.90, & = y and the prediction of E; is
not defined. Estimates of E; based on each of these equations are presented in
Figure E3.6 as a function of v Predictions from equations (3.37) and (3.40) are
close to one another, but significantly lower than those from the other relation-
ships. Estimates for Gz can be shown to follow similar trends. More deviation in
results would arise if an orthotropic fiber had been selected, since not all equations
are capable of accounting for this condition.

m:; [} AN B (LB S B N Anint At M (S S B S B S R
* 5 . -
‘B - gquation {3.37)
2 4} -- equation {3.40) -
S ~0~ equation (3.53)
@« 3 -a- equation (3.55) —
‘-_:-’“, 5 -+ equation (3.57)
°
Q

1= _— o At —
f .c:ﬁ.;i-'rﬁ
';:, 0 L L 'l l L L .y l L 1 L l L 1 L [ 1 e
& 0.0 0.2 0.4 0.6 0.8 1.0
L

Volume Fraction of Fibres (v)

Figure E3.6. Correlation of predictive micromechanics equations.

3.4.2 Physical Properties and Strength Estimates

Physical parameters defining thermal and hygral behavior of lamina can be esti-
mated in a rule-of-mixtures manner. The models are similar to those used for
the elastic moduli. As a result, the topic is not fully developed herein, and only
the results from selected references are presented (Chamis [24, 25], Hopkins and
Chamis [26], Schapery [30], and Hashin [31]). Micromechanics expressions for
composites with isotropic constituents are given in Schapery [30], and the case of
orthotropic constituents is discussed in Chamis [25], Hopkins and Chamis [26],
and Hashin [31]. For isotropic constituents, the thermal expansion coefficients are
represented as

Ea
Xy — —

E (3.58)
a2 = (1l + vp) + atm(l + v — ay (vrvs + o)

where Eoe = Eqotrvp + E@mvm, and E = Equ + E gt
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Chamis {24] assumed that the fibers experience orthotropic thermal expansion with
aq and op representing their longitudinal and transverse coefficients of thermal
expansion, respectively. The comresponding relationships for «; and a; are

_ von £ + vmOmEm
E,

o
(3.59)

vmE
@2 = Cpp/% + (] —ﬁr)(um)

E,

where E; is given by equation (3.53). Although these expressions do not reflect
fiber orthotropy, the expressions for thermal conductivity in Chamis [24] do.

Expressions involving interphase properties are presented in Hopkins and Chamis
[26]. Imposing the same assumptions and limitations on d /dy, Ey4, etc., as done in
the corresponding elastic modulus estimates results in

_ vianEgy + umamEn
E,

oy

3.60
ve(om — a2) (3.60)

0 = 22l — i) + 2BV 5
1-&(1—5—’“—)

22

In equation (3.60) the expressions for E, and E; are given by equation (3.55).
The expressions for «| in equations (3.59) and (3.60) are identical, while those for
o2 are different. Numerical values for ey, o, and @, given in Chamis {24] are
presented after coefficients of hygral expansion are presented. All three expressions
for a; and ¢, yield reasonable results.

The procedures used to develop coefficients of hygral expansion are analogous
to those for thermal expansion coefficients. The primary difference is that g = (
for both isotropic and orthetropic fibers since they are penerally not sensitive to
moisture absorption. The coefficients of moisture expansion in each direction are,
from Schapery [30],

BanEmtm

ﬁl - Ef’Uf + Eqtm

(3.61)
(0 v dveFs + [1 — vp(] 4+ vp)lEn
B = ﬂmvm
Ervr + Eqtm
The analogous expressions defined in Chamis [25] are

B = 3

(3.62)

Eny/Tll — /7)) ]

B = (1 = ) [1 4 S
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The expressions for 8, in each equation are identical. The two equations yield
different results since the E; and E; terms in equation {3.62} are assumed to be
defined by equation (3.53). The coefficients of thermal and hygral expansion for
selected constituent materials are presented in Tables 3.4 and 3.5.

Table 3.4, Thermal expansion coefficients for selected fibers
{after Chamis [24]).

Material @ (x107¢ in/in/"F) az (x107% infin/°F)
Boron 2.80 2.80
HMS —0.55 5.60
AS —0.55 5.60
T30 -0.55 5.60
Kevlar -2.20 30.0
S$-Glass 2.80 280
E-Glass 2.80 2.80

Table 3.5. Thermal and hygral expansion coefficients
Sor selected matrix materials (after Chamis [24]).

Material o (xH0™% infin/°F) B (infin/M)
LM 57.0 0.33
IMLS 57.0 0.33
IMH3 36.0 0.33
MH 40.0 0.33
Palyimide 20.0 0.33
PMR 28.0 0.33

The relationships between constituent strengths, moduli, and volume fractions can
be obtained from vanous sources, including Hopkins and Chamis [26] and Chamis
[32, 33]. A wide range of approaches are possible when attempting to develop a
micromechanics model for strength predictions, several of which are presented in
this section.

The expressions presented herein assume tensile and compressive failure strengths
of fibers and matrix, represented as S¢r. Sgc, Smt, and Syc, respectively. The
fiber is assumed to be insensitive to shear and has no denotable shear strength.
The matrix can experience shear failure, which is denoted as S,,5. Experimentally
determined failure strengths for continuous fiber lamina are typically established
under conditions of longitudinal, transverse, and shear loadings in the 1-2 plane
and are expressed as .5, Sy, and Sz, respectively. Both §| and S; can have a
tensile (T) and compressive (C) subscript, while 82 is invariant to positive or
negative shear. One should not confuse the 52 defined in this section with the §»
compliance term previously defined,

The simplest expression available is based on a simple mechanics of materials
model [32] which does not define an §;. The failure strengths from Chamis [32)
are given to be
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UmEm
] (3.63)

veE
Site = Sire [UH- I3 ! m]

Satc = SmT.c [“Um + E.

f11
The first of these expressions is sometimes reduced by the assumption that since
En <« Ey, the second term can be omitted without a significant loss in accuracy.
In some cases this assumption may be valid, while in others it may not. The
compressive form of the expression for S; does not account for possible fiber
buckling and is therefore not as reliable as the tensile form of the expression.

Expressions for failure strengths defined in Chamis [33] consider shear failure, as
well as failures in the 1- and 2-directions, and are

Sitc = veSire

En
Sorc = Swrc [1 — (Jv5 — vr) (1 - EE”)] (3.64)

122

Gm
512 = Sns [1 — (v —vp) (1 - G—)}
f12

The S, expression in equation (3.64) is identical to that in equation (3.63) under

the assumption that the v,, term can be neglected, as previously discussed.

The relationships developed in Hopkins and Chamis [26] are more elaborate than
either of the previous relationships. For a tensile stress in the 1-direction the
strength is predicted by

UmEm]

S]T—_-Sf'[‘ |:’Uf+ E

(3.65)
fll

For a compressive siress there are three options, the appropriate one being that
which produces the minimum value. Therefore, for compression,

[ vam]
Sec o+
fC [ ! Ernp

vy }

S[C = min 4 (366)

m

Smc [Um +

g
Gz [vm+ s mlz]

f12

L Smc + 512
The expressions for Syr.c and 8, are similar:

SoT.C

. 2
{1—&[1—5—'“]}\/1+¢(¢—n+ @D
SmS

Gn (¢ —1)?
{“ﬁ["m]}\/‘”’“"““ 3

(3.67)

Satc =

Si2=
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o

where ¢ corresponding to Sor ¢ is

Em
. —m
o= /T _ En - (3.68)
i—l dvr l—ﬂ)_f(l——m)
4’Uf Efz
The expression for ¢ corresponding to §y; is
Gm
1 T Gp

—— S 3.69
LR A 1—ﬁ(1——G—T) oo
4'Uf f Gf2

The strength predictions just presented generally contain E¢y, Epg, and E,,. These
moduli are assumed to be independent of load direction, and a tension test is
assumed to produce the same modulus as a compression test, Although this may
be true for some materials, it is not always true. In order to account for this
possible bimedular behavior, one could approximate the compressive modulus by
using constituent properties based on a compression test.
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3.6 Problems

31

iz

33

3.4

35

For the state of plane stress shown, determine the stress in the principal
material directions in terms of .

(A) fo (B) ©) l 26,

y x ¥ 200
—- il ———— P a—
-30° oy a5

¢ s

A unidirectional lamina with dimensions shown is stretched into the deformed
shape indicated by the dashed lines. Determine the state of stress in the
x—y plane required to produce this deformation, knowing that E; = 30.3 x
10° psi, E; = 2.80 x 10° psi, Gy2 = 0.93 x 10° psi, and vp = 0.21.

(A) (B)
y
0.024" 0.04°
¥ \0.0010"
. _ Ly
X [PPSR Srulie py SR

0.006"

Work Problem 3.2 with E, = 7.0 x 10°% psi, E» = 2.1 x 10® psi, G2 =
0.8 x 10° psi, and v;3 = 0.26.

A unidirectional lamina with E; = 30.3 x 10° psi, E; = 2.80 x 10° psi,
Gz =093 x 10° psi, and v =0.21 is stressed as shown. Find the
corresponding displacement field.

(A) (B} 4 10ksl 9]

¥
a5e x 10 ksi

—— 20 ksi

Work Problem 3.4 assuming E; = 20.02 x 10° psi, E; = 1.30 x 10° psi,
Gz = 1.03 % 10° psi, and v;; = 0.30.
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3.9

3.10
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A unidirectional lamina with the material properties of Problem 3.5 is

subjected to the normal stress shown. Determine the apparent Poisson’s
ratio vy,.

Sy ao° p

A unidirectional boron/epoxy lamina is cured at 370°F and allowed to retumn
to room temperature at 70°F. The coefficients of thermal expansion are
o) = 1.5 % 107% infinf°F, a, = 12.2 x 107% in/in/°F. The lamina is loaded
as shown. Find the strain in the principal material directions knowing E; =
30.3 x 10° psi, E; = 2.80 x 10° psi, Gj3 = 0.93 x 10° psi, and v, = 0.21.

y &

10 ksi 10 ksi

3o0° X

The lamina of Problem 3.7 is subjected to an environment of 95°F and a
relative humidity of 95%. The coefficients of moisture absorption as well as
the initial and equilibrium motisture contents and the appropriate equation for
relating moisture content and time are $; = 0.01, £, = 0.40, My = 0.005,
M =0.0171,

M- M,

——— = 1.0 - 0.8105 f(a.z?xmfﬂn‘
Mo — Mg €

where ¢ is the time measured in seconds. Determine the strain in the principal
material direction after 6 hours.

A lamina with mechanical properties given in Problem 3.7 is placed between
two rigid walls in the stress-free state (370°F). As the lamina cools to 70°F its
overall length (the distance between the walls) remains unchanged. Therefore,
a stress in the x-direction is present. Determine the resulting Cartesian and
principal material direction stresses and strains.

(A) @=130° (B) 6=45 (C) 6= —60°

y A

\ %
EB
The lamina of Problem 3.9 is also subjected to hygral effects for 6 hours.

The hygral properties in Problem 3.8 are applicable. Determine the Cartesian
and principal-direction stresses and strains for this lamina for 8 = 30°.
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3.11 Rigid beam AB is pinned at C, and supported at A by a pinned composite
column. The dimensions of the composite column and beam AB are shown.
In order for the entire system to function as designed, member AE must
be atlowed to displace (.025 in when beam AB is subjected to the loading
shown. Determine the required fiber orientation for this to happen knowing
E| = 20.0 x 10° psi, E2 = 1.30 x 10° psi, Gy2 = 1.03 x 10% psi, and vi; =

JIN

e
E A?‘
L o

0.5"

100016 Y

7

3.12 Assume tnangular and regular hexagonal fiber packing arrangements as
shown. The fibers have a diameter 4 and a separation distance s. Prove
that

nd?

= 2352

b (triangular)

(regular hexagonal)

3.13 Assume that a rectangular fiber of dimensions ¢ and b is embedded in a
mairix material. Determine vy for each packing geometry shown.

a
b
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A continuous fiber “hybrid” composite is assumed to be modeled as shown.
The fibers are made of two different materials. The fibers and matrix are
isotropic and homogeneous with elastic constants (Er, Gy, veh, (Er, Gr, vs)h,
and (Ey, Gm, vm)- The subscripts 1 and 2 refer to fibers 1 and 2, An RVE
of the hybrid lamina is alse shown. Use this RVE shown to:

(A) Derive expressions for £, and F5 by appropriate use of the Voigt and
Reuss models using the model shown. Be aware that fibers 1 and 2 are
different and that Ef +# Ef.

(B) Assume that the total volume of the material modeled is V = 1.0, and
the volume fraction of matrix in the lamina is 40%. Assume that the
elastic modulus of fiber | and fiber 2 can be related by Ef = nES, where
1 <n <5 If EY = 20E,, plot E1/E,, and E2/E, vs n.

3
hy P
+ —_—
hm 2
material A material B

A layered medium consists of three alternating layers of dissimilar materials.
All materials can be assumed to be elastic, isotropic, and homogeneous,
with properties [E 4, Ga. val, [EB, Gg, vgl, and [Ec, Gc, vc). Clearly state
assumptions regarding constant strain, etc., and use simple rule of mixture
assumptions to

(A) Estimate the effective elastic moduli E,, E5, and E1.
(B) Based upon the results of part (A), approximate G2 and G 3.

hA—\
hg
hc—/

3.16 Assume that a graphite/epoxy lamina can be modeled as shown.

(A) Derive expressions for £ and E, using Voigt and Reuss models.

{B) Assume a 70% fiber volume fraction and material properties of Ef =
40 x 10° psi, vf = 0.25, Eq = 0.5 x 10° psi, and vy, = 0.35. Compute
E\ and E; using the expressions derived in part (A).

(C) Compute E; and E; using the Halpin—Tsai equations with & = 1.
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3.17 The elastic moduli for a material are defined by equations (3.36), (3.37),
(3.38), and (3.39). The material properties for each constituent are Er = 30 x
106 psi, Gy =12 x 10° psi, vy =0.25, E, = 1.0 x 10® psi, G, = 0.385 x
105 psi, and vy, = 0.30. Plot ¢, /a0, and £3/0, vs v; for the state of stress
shown. Allow the volume fraction of fibers to be in the range 0.40 < vy <
0.70. Assume a fiber orientation of

(A)6=30" (B)6=45 (C)od=60
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MECHANICAL TEST METHODS FOR
LAMINA

4.1 Introduction

Birefringent coatings, holography, anisotropic photoelasticity, and Moiré have been
successfully used in experimentally evaluating composite materials. Topics relating
to experimental procedures and laminate test methods are available in texts [1-3],
or from periodic publications. The discussions presented herein focus on methods
used to establish mechanical and physical properties of orthotropic lamina.

Many test procedures and specimen geometries used with isotropic materials are
not applicable to composites. For composites, one is generally concerned with
defining load and displacement (or strain) histories throughout a specific test
sequence using LVDTs, extensometers, or strain gages. An LVDT or extensometer
{using optical or electrical resistance strain gages) measures the relauve displace-
ment between reference points on a specimen, and the sensing elements of either
device are not directly applied to the specimen. An electrical resistance strain gage
can be applied directly to the specimen. Information from each of these devices
is processed to define the parameter(s) of interest. Procedures for accomplishing
this are discussed in texts such as Dally and Riley [4] and is not presented herein.
Strain gages are perhaps the most cornmonly used strain measuring device and are
briefly discussed.

4.2 Strain Gages Applied to Composites

The concept behind electrical resistance strain gages is simple and is based on the
original 1856 findings of Lord Kelvin [4}, who found that the resistance of copper
and iron wires increased as tensile loads were applied to each. Since the applied
loads caused changes in the original length of each wire, which are expressible as
strains, a direct correlation between strain and resistance change is obtainable. The
evolution of strain gage technology from the first practical application in 1938 by
the separate efforts of Ruge and Simmons has been substantial. There are many

102
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factors which can cause ertors in correlating resistance change to strain, and they
can be grouped into six categories [3]:

(a) The wire must be firmly bonded to the specimen so that its deformation accu-
rately represents the deformation in the specimen.

{b) The wire must not locally reinforce the structure. If it does, the deformation
of the wire does not accurately reflect specimen deformation.

{c) The wire must be electrically insulated from the structure.

(d) The change in wire resistance per unit microstrain is generally small, but must
be accurately measured.

(e) Deformation of the structure via mechanisms other than applied loads (such as
temperature) must be accounted for.

(f) Aggressive environments may cause oxidation of the wire and lead to resistance
changes of the wire which cause erroneous results.

The selection of an appropriate strain gage for a specific application is not a trivial
matter, and issues such as temperature compensation, working environment and
appropriate strain measuring circuits must all be considered for accurate collection
and evaluation of data. These topics are beyond the scope of this text, but are
addressed in various references [3-9].

4.2.1 General Interpretation of Strain Gage Data

A single element strain gage applied to a uniaxial tension specimen is represented
in Figure 4.1. The longitudinal axis of the gage defines the direction in which
strains are measured. Although a uniaxial state of stress exists, a state of biaxial
strain results. Both axial and transverse specimen strains affect the strain measured
by the gage. The relation between resistance change and a general state of strain
is written as [4]

AR
—R_ = 88+ S&+ Siva 4.1)

where AR = change in gage resistance
R = original gage resistance
5, = sensitivity of the gage to axial strains
S, = sensitivity of the page to transverse strains
§s = sensitivity of the gage to shear strains
£, = normal strain in the axial direction of the gage
& = normal strain in the transverse direction of the gage
ya = Shear strain

b
€a
— =
T [+
¥

Figure 4.1. Single element strain gage on a uniaxial tension specimen.
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In general, the sensitivity of a strain gage to shear strain is smail and therefore
neglected. A parameter called the transverse sensitivity factor is introduced into
equation (4.1} and is

K=235/5 (4.2)

The numerical values for K generally range from —0.05 to 0.05, and manufacturers
report these numbers as percents, so that K = 5% corresponds to K = 0.05. Using
this definition of transverse sensitivity, and setting §, = 0, equation (4.1} becomes

AR

= Salea + K&y) 4.3
A calibration constant known as the gage factor S, (supplied with each strain gage)
relates the resistance change to the axial strain by AR/R = §y¢,. The calibration
constant is determined from a test performed on each lot of gages being produced.
This test is conducted by mounting a gage on a standardized beam, so that is
longitudinal axis coincides with the direction of maximum normal strain when the
beam is deflected a specified amount. The state of stress at the gage location is
uniaxial tension, but a state of biaxial strain exists in which & = —¢,; where vy
1s Poisson’s ratio of the calibration beam (generally vy = 0.285). Substituting this
into equation (4.3) results in

AR
? = SaEa(l - U[]K) (4.4)
From this expression the gage factor can be defined as
AR/R
S = .‘3/ = 5,1 — k) (4.5)
&

The strain experienced by the gage (in its longitudinal direction} is related to the
resistance change by
_ AR/R

Se

(4.6)

&g

Equation (4.6) is based on the following assumptions: (1) the gage is subjected to a
uniaxial stress field; (2) the gage grid is parallel to the direction of the stress field;
and (3) the gage is mounted on a material for which v = v, used in the calibration
test. If all of these assumptions are satisfied, the measured strain (g4} is identical
to &£,. This ideal situation seldom exists, and in general equation (4.6) should
not be used directly. Although erroneous resuits obtained by direct application of
equation (4.6) are not severe in many situations involving isotropic materials, they
can be when considering composite materials. The percent error associated with
using equation (4.6) directly has been established [4] and is

. K{e/ea + vp)

E
1 — vk

(100) 4.7

The relationship between E and K for various g /e, ratios are presented in
Figure 4.2. The ratio of transverse to axial strain (£, /¢;) is established from the
loading conditions which produce the strain to be measured. The errors should
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Figure 4.2. Percent error associated with various transverse sensitivities and = fe, ratios
(after Dally and Riley [4]).

be estimated from equation (4.7) with an estimated ratio of & /£, based on the
material being tested.

In order to compensate for the effects of transverse sensitivity, a minimum of two
strain measurements is required. Assuming that a biaxial strain gage rosette is
used (two strain gages mounted on a specimen so that two orthogonal strains are
measured), the true strain in the x and y directions can be estabiished from the
measured strains [4]. Denoting £; and £, as the true strains, and £, and &n, as
the measured strains, respectively, the following relationships are obtained:

_ (1 —wK)(em, — KEmy)
- - K2 by

_ (1 - vOK)(Emy - KEmI)
a 1 - K2

{4.8)

X

These expressions for the biaxial strain gage rosette are only applicable for that
particular type of rosette. A variety of other types of strain gage rosette are avail-
able. Two of these often used with composites are the rectangular and delta rosettes
{each containing three strain gage elements). These are schematically shown in
Figure 4.3. Relationships between measured and true strains for the rectangular
rosette are given in Pendleton and Tuttle {3] as

_ (1 - U{]K)(Em.x - K'Emy)

r =

1 - K2
(1 ~ vKWemy - Kemy)
e, = e (4.9)
1 — vk
45 = (—l—_—‘z—,g—){gms — K(em: + €my — Emas)

where £q,45 is the measured strain for the 45° strain gage. For the delta rosette the
relationships between true and measured strains are

1 — vk K £med + Emizo
= — 14 2 ) ey — 2k 00 T Eori20
i 142{(*3)5“‘ 3 }
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y y
45°
X X

Biaxial Rectangular Delta

Figure 4.3. Biaxial, rectangular; and delta strain gage roseftes.

1 — K K Emx + Emi20
Ean 1 - K2 {( + 3 ) Em&0 2K+—-—-——3 } (4 10)
1 — pK K Emy + €m0
= 1+ = —2K——M—
€120 1= K2 {( + 3)8m120 2 }

Equations (4.8) to (4.10) are only valid if X is identical for each gage. For situa-
tions in which K varies from gage to gage, the appropriate relations can be found
in a technical note [10]. The Cartesian strain components associated with each of
these true strains are obtained from the strain transformation equation in Chapter 2.

The typically low values of K that strain page manufacturers can obtain indicate
that measured strain gage data generally vields accurate results. This is true in
many cases involving isotropic materials; it is not generally true for composite
materials. Transverse sensitivity effects for composites are typically enhanced since
the apparent Poisson’s ratic for a orthotropic material is generally different from
the vy of the gage calibration material. The evaluation of transverse sensitivity
effects for strain gages on composites presented by Tuttle [11] is summarized
in equation {4.3). Tests were conducted on unidirectional carbon/epoxy specimens
suhbjected to uniaxial tension. Both axial and transverse strain gages with K = 0.03
were used, and fiber orientations varied. The axial gage had at most a 1% error
between measured and corrected data for the worst case (fiber orientation greater
than approximately 70°). The transverse gage, however, was shown to exhibit
severe errors when K was not used to correct the measured strain gage data. Results
of the analysis described in Pendleton and Tuttle [3] are presented in Figure 4.4,

0 —— — S N R B
§ -50 - —
o 100 .
c
8 1m0+ —
[+ 7}
& 2001
_250 [T NS N NSNS S S S
0 10 20 30 40 50 60 70 80 90

Fiber Angle (degrees)

Figure 4.4. Percentage error in measured transverse strain (without correcting for K) vs
@ (after Pendleton and Tuttle [3]).
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where it is seen that the percent error resulting from neglecting K is large. The
magnitude of the measured strains for the transverse gage are considerably lower
than the axial strains, but the errors are significantly higher.

Example 4.1. Assume that a delta rosette (K = (.05 for each gage) is applied to
a unidirectional composite. The strain gages shown in Figure E4.1 indicate strains
of £4 = 23,015 pinfin, £ = 22,307 pin/in, and e = —9936 pinfin. Neglecting
transverse sensitivity, the strains for each gage are &g = &, cos’8 + ¢, sin” 6 +
¥y Sin B cos &, which results in

£a 23,015 1 0 0 Ex
{sB } = {22,307} x 107% = [ cos?60 sin60  sin60cos 60 ] { £y }
£C —9936 cos? 120 sin® 120 sin 120cos 120 Yey

Solving this expression yields

Ex
Vv

23,015
{ 576 } x 107°

37,232

Figure E4.1, Delta strain gage rosette orientation.

Using the measured strain (g4, etc.) and equation {4.10) with X = 0.05 and vy =
0.2835, the true strain for each gage is

£y - 10040 —0.0329 -0.03297 (23,015 22,700
{ £60 }: —0.0329 1.0040 —0.0329 { 22,307 } :{ 21,966 } x 107¢
£120 L —0.0329 -0.0329 1.00404 { 9936 —11,467

These strains, when used to evaluate the Cartesian strain components, result in

£, [ 1.0040 —0.0329 -0.03297 23,015 22,700
{ €60 }= —0.0329 1.0040 -0.0329 {22,30’7 }:{ 21,966} x 107°

£120 L —0.0329 —0.0329 1.0040 ] \ —9936 —11,467

A direct comparison between these results and those for X = (.0 shows an error
of 3.5% in the worst case for z, and y,,, but a substantial error exists for ¢,.

4.2.2 Strain Gage Misalignment

For an isotropic material the effects of poor alignment are not as critical as for
a composite. For example, using a steel specimen and allowing a set of biaxial
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gages 1o be misaligned by some angle (£), as shown in Figure 4.5, results in errors
for both the axial and transverse gages. In Pendleton and Tuttle [3], results for a
gage misalignment of —4° < 8 < 4° indicate that the maximum errors in axial and
transverse gages were —0.63% and —2.20%, respectively.

Figure 4.5. Gage misalignment on an isotropic specimen.

For a composite both the misalignment (8) and fiber orientation angle (#)
contribute to the errors in strain gage measurement. In Tuttle and Brinson [12], tests
on the effects of strain gage misalignment as a function of fiber orientation were
investigated for the specimen shown schematically in Figure 4.6. The percentage
error in axial and transverse gages which resuited were reported in Pendleton
and Tutie [3] to be similar to those shown in Figures 4.7 and 4.8, respectively.
The transverse gage experienced the most severe errors. Situations often arise in
which the complete state of strain is required, a single element strain gage, or
a biaxial rosette are not adequate. A strain gage rosette in which three normal
strains are determined is recommended for such cases. The transverse sensitivity
corrections for rectangular and delta rosettes expressed by equations (4.9) and
(4.10), respectively are applicable in this case. Proper alignment of strain gages
on composite can be critical when defining a complete state of strain, and care
should be taken to ensure proper alignment.

ok
s =

Figure 4.6. Gage misalignment on a composite specimen.

4.2.3 Strain Gage Reinforcing Effects

Strain gages applied directly to a specimen have been shown to produce rein-
forcement errors in tests with low modulus matenials such as plastics [13-16].
It is possible that similar reinforcement effects occur in composites. Strain gage
reinforcement is most likely to occur in regions where the geometric cross-section
of the specimen is thin and the elastic modulus in the gage direction is low.
The normalized variation of E,, as defined by equation (3.19), with respect to the
minimum elastic modulus of the matenal (E;) decreases rapidly with increasing
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30 e B=-2° T
20 ---- B=—4°
Pt -~ B=+20

p=+4

Percant Error

Fiber Angle (degrees)

Figure 4.7. Percent error in axial gage (after Pendleton and Tuttle [3]).
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Figure 4.8. Percent error in transverse gage (after Pendleton and Tuttle [3}).
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Figure 4.9. Variation of E_ [E; with fiber orientatian.

fiber orientation as shown in Figure 4.9 for Scotchply 1002 glass/epoxy. The
magnitudes of E,/E differ for other material systems, but the trend is the same.
For fiber orientations of —-30° <6 < 30°, E, > 2E;, while for all other fiber
orientations £, < 2E,. This can influence the degree to which a strain gage will
reinforce a specimen and provide inaccurate measures of the actual strain.

In many practical situations the strain gape is unlikely to significantly reinforce
the composite. Given the wide range of possible material properties available with
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composiles, there is a possibility that strain gage reinforcement can affect test
results. Methods of accounting for the reinforcing effect of strain gages are avail-
able [3]. The procedure consists of establishing a set of correlation parameters from
tests on a calibration specimen, and subsequently relating them to the measured
strains on the actual specimen. A simple model for estimating the amount of fiber
reinforcement can be defined following the procedures in Dally and Riley 4] for
birefringent coatings.

The simplest case to evaluate is uniaxial tension. Assume a unidirectional lamina
has a single clement strain gage applied to its surface in the direction of the applied
state of stress (o) as shown in Figure 4.10a. Assume the gage is perfectly bonded
to the specimen, there are no stress concentrations at the specimen/gage interface,
and the load sharing between the gage and specimen can be modeled as shown in
Figure 4.10b.

Oxg |
% W g - | Ny

8]
- : [
specimen Ox

-«+— specimen hy | —
Oxs \ Ox

(@) (b)

Figure 4.10. Model of load sharing between specimen and strain gage for uniaxial
tension.

In this figure o,, is the axial stress in the ungaged region of the specimen. Stress
o:s and o, represent the axial stresses in the specimen and gage, respectively. The
thicknesses of the specimen and page are represented by A and k,. Assuming the
representative volume element associated with Figure 4.10b has a width dy, a force
balance in the x-direction results in hyo,, dy = Ao, dy + hyo,, dy. Therefore,

h
Ops = Oge + (5) Trg 4.11)
hs

The relationship between axial strain and stress is established from equation (3.15).
Although reinforcement cffects may occur transverse to the applied load, the major
reinforcement will be in the direction of load application. The relationship between
applied siress and strain in the ungaged region of the specimen is
EIU
O = = = Ergtys
1

The specimen and gage stresses are defined by oy, = E 6y, and o, = Egey,

respectively. Using the assumption that the specimen and gage experience the
same strain (£;, = £, ), equation (4.11} becomes

hy
Epn = [l + 'h—gEgS]]] Erg
5
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The ratio of specimen to gage thickness can be represented as n = hy/h,. Intro-
ducing this into the preceding equation, and rearranging it in order to relate the
axial strains in the ungaged region of the specimen to those in the gaged region,

results in 3
Suk
Ew _ (1 + M) (4.12)

Exg n

The greatest reinforcement effect results when Sy is a maximum, which gener-
ally occurs at fiber orientations of 90°. For this case equation (4.12) can be

expressed as

E

B (1 + —g—) (4.13)
Exg HEZ

The degree of reinforcement (&, /£,s) depends on the composite material, strain
gage material, and the ratio of specimen to gage thickness (n = h./hg). A strain
gage can be characterized as a plastic, so E, is typically less than E;. Evaluating
equation {4.13) for various E,/E; ratios as a function of hy/h, results in the
distribution shown in Figure 4.11, where it is obvious that the effect of strain gage
reinforcement decreases rapidly with increasing A, /A,. It appears as if substantial
reinforcement is present for a large range of A, /hs, but strain gages are generally
on the order of 0.0035 in thick. Therefore, at J‘ls/hg = 10, the specimen would be
0.035 in thick. One should evaluate &,, /¢,, from either equations (4.12) or (4.13)
to determine if possible errors warrant compensation.

0 I — — ]
8| .

\
~ E4/E;=0.5 -
=] 6" 9 —
& L ---- EglEp=1.0 A
FooaE - - EyfE5=20 -

Figure 4.11. Strain gage reinforcement effects for uniaxial tension.

Strain gage reinforcement is more pronounced when flexure stresses exist. Assume
a unidirectional composite lamina is subjected to pure bending. The strain variation
through the specimen (&,;) and strain gage (£,g) in the region containing the gage
are modeled in Figure 4.12.

The distance & is used to define the location of the neutral bending axis. The
strain gage is assumed to be isotropic, and the stresses in the gage and specimen
are expressed as oy = Eg &, and oy = Ey £y = £,,/81), respectively. Since the



www.iran mavad .com

112 Laminar Compaositess|o. - o0 5 \Lg=iils o> o
z A

/
(B

{ dia £ ford< z<(d+hy)

X ggs for(d—hg) <z <d

|
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Figure 4.12. Model for strain gage reinforcement due to pure bending.

specimen is subjected to pure bending, the strains are related to the radivs of
curvature by

£y = ford —h, <z=<d
(4.14)

Exg = ford<z<d+h

I~ B~ ]

Satisfying the condition of equilibrium of forces in the x-direction requires

d d+h,
/ stdz-i-/ ngdz=0
d—hy d

Using equation (4.14) in the expressions for o, and o, results in

d d+hy
Exs/ (Z/P)dZ-I-Eg/ (z/p)dz=0
d d

_.hs

Evaluation of these integrals yields an explicit definition of the neutral bending
axis location d as a function of material properties and thickness of constituent
materials: R X
E.h:— Eqh
— _as TETe (4.15)
2[E shy + Eghy]
The ratio of specimen (o gage thickness (n = A;/h;) can be introduced into this
expression as it was for the case of uniaxial tension, which allows equation (4.15)

to be expressed as
d=0Chh {4.16)

where
E.n’—E,

C, =
Y 2Eqn + Eg

The radius of curvature is determined by establishing the standard conditions
of equilibrium for moments from M = f:‘hs W0sdz + f:”‘“ 20 dz = 0. Using
equation (4.14) in the expressions for o, and o results in M=

1/p {Ex, f:—-h, 2 dz+ E, _fj”“ z? dz]. Upon evaluation of these integrals, it is
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convenient to define two additional terms:
C; = 3d*h, — 3dh: + i} (4.17)
Cy = 3d°hg + 3dh; + b,

where d is defined by equation (4.16). The curvature and bending moment in the
strain gaged area are related by (1/p); = 3M /(E.,C; + E,C3). For an unrein-
forced specimen the relationship between curvature and moment is easily estab-
lished since by = 0, d = hs/2, and o, = 0. The resulting relationship is (1/p0), =
lQM/ExSh;T’. Since e,, = z/pp and &y, = z/py. the ratio of strains in the ungaged
region to those in the gaged region is €;,/€,; = pg/pu. Using the relationships for
(1/p) and (1/p), results in

£ _ HExCa+ EgCa)
Exg Eh}

{4.18)

where €'y and C5 are defined by equation (4.17).

Equation (4.18) is more complex than either (4.12) or {4.13) because of the rela-
tionships between C2, C3, d, and the relative thickness of both specimen and gage.
The maximum reinforcing (£,./¢.5) will generally occur for fiber orientations of
90° with respect to the x-axis (in the x-y plane). Expressing equation (4.18) in
terms of the elastic constants E; and E is not warranted for this case because of
coupling of terms related through 4. Evaluating equation (4.18) for various ratios
of hs/h, and E,/E, produces the results shown in Figure 4.13. At h /h, = 10
the best case shown (E /E; = 0.5) predicts £,,/e5; = 1.17, which implies a 17%
stiffening effect. As with uniaxial tension, the possibility of gage reinforcement
from bending should be evaluated prior to strain gage application.

£afixg

LA LI B LA

Figure 4.13. Strain gage reinforcement effects for flexure in the range 0 < h./h, < 10.

The amount of reinforcing associated with a specific set of gage and specimen
properties can be estimated from equation (4.12) or {4.18). If reinforcement is
considered a potential problem, the procedures in Pendleton and Tuttle [3] can
be used.
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4.3 Experimental Determination of Mechanical Properties

Nine independent elastic constants are required to define the mechanical response
of an crthotropic lamina. In many cases of practical importance a state of plane
stress exists and the out-of-plane material properties are not required since they are
often approximated by in-plane properties (E; = E3, etc.). The mechanical prop-
erties generally considered to be of greatest interest are E,, E>, Gia, vi2, and vy,
Lamina failure strengths can be established as part of the experimental procedures
used for determining elastic properties. A unidirectional laminate is typically used
since individual lamina are too thin and weak in the transverse direction to sustain
sufficient load for determining elastic moduli and failure strength. The procedures
discussed herein are those most commonly used in establishing the properties just
identified, and those which are typically easiest to implement.

4.3.1 Tensile Testing

Each previously cited material property can be established from uniaxial tension
tests of unidirectional laminates. Although G2 can be established from uniaxial
tension tests, discussion of shear modulus determination is reserved for a later
section. The recommended test procedures which should be followed in estab-
lishing these properties are described in ASTM D3039-76.

A dogbone specimen used in uniaxial tension tests of flat coupons for isotropic
materials is not acceptable for laminates. Establishing £, and £ (along with v;
and v91) requires test specimens with fiber orientations of 0° and 90°, respectively.
A dogbone-shaped specimen with a (" fiber orientation will result in the formation
of matrix cracks parallei to the fibers, and an eventual failure in the region indicated
in Figure 4.14. A stress—strain curve generated from such a specimen may contain
a region of valid data (up to the point where the matrix cracks begin to develop),
but will generally not yield an accurate modulus prediction or failure strength.

l— failure cracks E

T ~—

Figure 4.14. Failure mechanism for composite dogbone specimen.

The 90)° specimen will not fail in this manner. Damage induced by machining the
specimen into a dogbone shape may weaken the matrix to the extent that invalid
predictions of E; result. A more appropriate specimen is a flat coupon with end
tabs. The end tabs help reduce the probability of failure in the grip region where
the applied loads are transferred from the testing machine to the specimen. Without
end tabs the normal force between the specimen and grips could crush the fibers
in the grip region and produce premature failure.

The standard dimensions of a test specimen depend on fiber orientation. The geom-
etry and dimensions for (° and 90° tensile coupons are given in Figure 4.15. The
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Figure 4.15. Geomertry and dimensions of 0° and 90° tensile specimens.
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£4 gives E; & ey/ea gives vy, £4 gives E, & e4/ea gives vy

Figure 4.16. Schematic of fiber orientations and strain gage positioning for determining
£\, Ey, Vi3, and V.

total thickness of a specimen depends on the number of plies in the laminate. The
end tabs are typically 1.50 in long and 0.125 in thick. The tabs are beveled to
allow for a more uniform load transfer from the grips to the specimen.

Strain gages or extensometers are often used to determine the stress—strain history
of a specimen. Using both longitudinal and transverse gages, a single test can
produce either E,, vy2 or E3, vz, depending upon fiber orientation, as illustrated
in Figure 4.16. Strain gages placed on the front and back of each specimen (in a
full Wheatstone bridge) negate the effects of bending due to eccentricity of the
load line [4]. A biaxial extensometer could also be used.

Specimen Dimensions

Fiber Width Number Length
Orientation (in) of Piles (in)
0° 0.50 6-8 9.00
90° 1.00 8-16 9.00

A typical set of stress—strain curves for 0° and 90° AS/3502 graphite/epoxy
tensile specimens is presented in Figure 4.17. Faiiure of the 90° specimen is
matrix dominated. The fibers are capable of sustaining a far greater load than
the matnx; therefore, the 0° specimen fails in a significantly different manner.
Along the failure surface there are jagged edges indicating that failure was not
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Figure 4.17. Stress-strair curves for AS/3502 graphite/epoxy.

instantaneous. As the ultimate load is approached, individual fibers begin to fail
with an audible “ping” sound. Individual fibers will fail at slightly different load
levels.

4.3.2 Compression Testing

In conducting compression tests it has been noted that a composite material may
exhibit different tensile and compressive moduli (Ey, E3, etc.) and is termed binod-
ular. The influence of bimodularity on analysis techniques and failure analysis can
be significant [17]. The failure strength is generally considered more significant
than modulus when comparing tensile and compressive behavior. Some of the
differences between tensile and compressive behavior can be attributed to the
difficulty of compression testing. Slight geometric variations in the specimen may
result in eccentric loads, which enbance the possibility of failure due to insta-
bility as opposed to stress. There are three accepted test methods that reduce
this possibility as described in Whitney et al. [1]. Each is briefly outlined and
schematic diagrams of grip arrangements are presented. Strain gages are gener-
ally used for each of these test methods. Additional compression test methods are
available, which are presented in a survey article pertaining to compression testing
of composites [18].

Type L This method is characterized by having a completely unsupported spec-
imen with a relatively short test section length. Several types of fixtures exist for
this method. The Celanese (ASTM D-3410-75) test fixture and associated spec-
imen geometry are shown in Figure 4.18. The Illinois Institute of Technology
Research Institute (ITTRI) (19] test fixture uses a test specimen identical to the
Celanese fixture and is shown in Figure 4.19. Strain gages are mounted on the
specimen, which is loaded through serrated wedges constrained by solid steel
bases. The Northrop test fixture [20] is simpler than the Celanese or IITRI fixtures
and is shown in Figure 4.20. The final example of Type I compression testing is
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Figure 4.18. Celanese test fixture and specimen (ASTM D 3410-75).

fixture

Figure 4.19. Modified grips for HTRI compression test [19].
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Figure 4.20. Northrop compression test specimen and fixture [20).

the NBS (National Bureau of Standards) test fixture [21]. This fixture combines
aspects of the Celanese and ITTRI fixtures and adds features that allow for tensile
tests. The NBS fixture is shown in Figure 4.21. All four of the Type I test methods
yield acceptable results, but are difficult to conduct because of load line
eccentricity.
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Figure 4.21. NBS compression test specimen and fixture {22].

Type IL In this class of tests the specimens are characterized as having a rela-
tively long test section that is fully supported. The SWRI (Southwest Research
Institute} [22], and the Lockheed type fixtures [23] are schematically shown in
Figures 4.22 and 4.23, respectively. Results from experiments using these grips
are comparable to data from Type I tests. The SWRI grip has a cut in one support
to allow for a transverse gage to measure Poisson’s ratio in compression. Longi-
tudinal strain is measured by an extensometer or strain gage placed on the edge of
the specimen. The specimen is a modified tensile specimen in which the overall
length is reduced while the end tab lengths are increased. The entire specimen
length is supported by the fixture. The Lockheed fixture uses side supports only
over the gage section of the specimen, which is the primary difference between it
and the SWRI fixture.

fixture specimen
= (=] Nl ]
] j J
j - E % i
Kl
=] [ Ll L

Figure 4.22. SWRI compression test fixture [22].

Type IIL. The final class of compression test methods involves two sandwich
beam specimen configurations. In each case straight-sided coupons are bonded to a
honeycomb core, which supplies lateral support. The elastic moduli and Poisson’s
ratio are determined from relationships between applied loads and strain gage read-
ings taken from the specimen [1]. Results of failure strengths from this method are
usually higher than those from the other methods. The sandwich beam method can
also be used to determine tensile properties [24]. The two specimen configurations
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Figure 4.23. Lockheed compression lest fixture [23].

are shown schematically in Figures 4.24 and 4.25. The specimen in Figure 4.24 is
referred to as the edgewise compression test specimen and is used to determine E,
and vy, from the initial linear portion of the load -displacement curves generated
during testing. The applied load is assumed to be distributed equally between the
top and bottom specimens. The core is assumed to carry no in-plane load and is
intended to supply lateral stability so that the potential for buckling is reduced.
The elastic modulus and Poisson’s ratio are determined from strain gage readings
to be

—&; E oy _ P _ P
e, &, 2As, 2bhs,

\ e
‘ X\ strain gages

z z
core

(4.19)

(o O -

P/i2

specimen

Figure 4.24. Sandwich beam edgewise compression test configuration [1].

The specimen in Figure 4.25 is somewhat different because it 1s loaded in four-
point bending. The specimen is the top sheet, which experiences compression. The
bottomn face sheet is in tension and is metal. Since the sandwich beam is subjected
to flexure, various parameters (metal face sheet strength, core cell size, etc.) can
be changed to achieve the desired compresston failure of the specimen [24, 25].
Poisson’s ratio for this specimen is determined from direct strain gage readings to
be v, = —g,/£,. The elastic modulus E, is somewhat harder to establish since it
requires an assumption of uniform deformation in each face sheet while bending
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Figure 4.25. Four-point bend sandwich beam compression test {1].

stresses in the core are neglected. The approximation of E, is

£ PL
T 4bhe 2t +h+ h)

(4.20)

4.3.3 Shear Tests

The material properties in the plane of lamination (1-2) are commonly termed in-
plane, while those in the 1-3 and 2-3 planes are known as interlaminar properties.
As with extensional and compressive properties, the in-plane (1-2) properties are
generally of more interest for classical laminated analysis than interlaminar proper-
ties. Five commonly accepted methods for in-plane shear testing are presented next.
One of these procedures contains discussions applicable to interlaminar properties,
The short beam shear test, commonly used to define interlaminar shear strength, is
discussed in Section 4.3.4. Discussions regarding the cross-beam sandwich, picture
frame panel, and slotted tension test procedures for establishing shear properties
are not considered herein, but may be found in various articles, including Lee and
Munro {26]. In each of the test methods discussed, strain gages are typically used.

1. Torsion. Torsion of round specimens produces a state of pure shear, which is
optimum for determining the in-plane shear modulus. Two types of round spect-
mens, either a solid rod or hollow tube, can be used.

Solid Rod. This specimen consists of a unidirectional rod, generally machined
from a square bar. The shear stress distribution in this type of specimen is
known to vary linearly with distance from the center of the specimen according
to T =Tp/J, where T, p, and J arc the applied torque, distance from the rod
center, and polar area moment of inertia, respectively. Knowing the applied
torque atlows for a simple prediction of stress on the outside surface of the rod.
Using strain gages to determine the shear strain as a function of applied load
gives a simple procedure for developing a T—y curve. The solid rod configu-
ration is not used too often for two reasons: (1) A typical load—-displacement
(T ~¢) diagram has a large region of nonlinear response, and therefore, only
a limited region of the curve provides useful data; and (2) a solid specimen
is expensive and difficult to produce.
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Hollow {Thin-Walled) Tube. This specimen configuration is the most desirable
from a mechanics viewpoint, since the shear stress is approximately constant
over the wall thickness [27]. The actual variation of shear strain from the
inner to outer surfaces of the specimen can be evaluated vsing strain gages
applied to both surfaces. Proper application of a gage to the inside surface is
difficult. A single element gage oriented at 45° to the axis of the specimen
(Figure 4.26) provides a simple analysis tool for defining shear strain since
¥xy = 2€45. As an alternative to the single element gage, a biaxial rosette can
be used. The biaxial rosette should be applied so that each sensing element is
at 45° to the axis of the specimen (Figure 4.26). The strains indicated by the
+45° and —45° gages should be equal in magnitude, and opposite in sign. The
shear strain is the summation of the individual readings. A third possibility
is a rectangular rosette applied so that the gages are oriented as indicated
in Figure 4.26. The +45° gages provide the same information as the biaxial
gage, while the gage aligned with the axis of the tube provides a measure
of the extent to which pure torsion is achieved. This gage should indicate no
strain, or a very small strain which remains constant with increasing torque.
Although axial strains are not uncommaon because of compressive end forces
exerted on the specimen by the torsion machine, they should be small and
relatively insignificant when compared to the shear strains.

% Lo gl

biaxial rectangular
gage rosette rosette {

Figure 4.26. Strain gage orientations on torsion specimens.

The approximately constant through-the-wall shear stress in the hollow tube
specimen produces a good 7—y curve. Two problems associated with this test
procedure are the expense of producing a hollow thin-walled tube, and the fact
that a tube can be crushed by the end loads required to secure it to the torsion
machine. One acceptable approach to gripping has been presented by Hahn and
Erikson [28], and is schematically shown in Figure 4.27. This configuration

aftachment 10

farsion machine ----- adhesive
\WJ %

plus
LA /
pin hole composite ‘—A

tube

Figure 4.27. Grips for torsion testing composite tubes {28].
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provides a rigid base for clamping and adequate load transfer through pins
and glue to the thin-walled torsion specimen. Variations to this adaptive end
configuration are easily devised. The wall thickness to diameter ratio should
generally be less than 0.030 to ensure a uniform stress distribution.

2. Shear Rail Test, The shear rail test is easier to prepare and conduct than the
torsion tests. There are two acceptable configurations for the shear rail test: two-rail
and three-rail. A schematic of the load fixture for each is shown in Figures 4.28 and
4.29, respectively. Both configurations are attributed to the ASTM D-30 commitiee.
The specimen is simple to construct and machine. The suggested overall dimen-
sions and hole sizes for both the two- and three-rail specimens are shown in
Figure 4.30.

=

apparatus

specimen

| i I
I 1T 17111

HLit 1 B
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1

Figure 4.28. Two-rail shear apparatus and specimen.
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Figure 4.29. Three-rail shear apparaius and specimen [1].
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Figure 4.30. Specimen geometry for two- and three-rail shear tests [26].

For both the two- and three-rail configurations the shear stress in the strain gaged
region of each specimen is defined in terms of the applied load P and the specimen
thickness (&), as well as the distance between each vertical rail (b). The shear stress
for each configuration is approximated by

P
Toy = o (two-rail)

Ty = % (three-rail)

Because of the method of load application, free surfaces at the top and bottom of
each specimen experience large normal stresses concentrated at the corners [29].
A length-to-width ratio of 10:1 has been shown to approximate a state of pure
shear stress, provided the edges are perfectly clamped. The requirement of perfect
clamping can be met if the bolts in the rails each apply the same clamping pressure
to the edges. Since a state of pure shear is only approximated with the two- and
three-rail configurations, a single element strain gage oriented at 45° to the load
axis may not adequately define the true state of strain.

3. 10° Off-Axis Test. An off-axis test is generally performed in order to establish
stress—strain responses in directions other than the principal material directions.
The off-axis test is a tension test and no special fixtures or specimen preparation is
required. Consider the unidirectional test coupon loaded as shown in Figure 4.31.
The rectangular rosette in this figure is not required for establishing Gy,. Its pres-
ence is solely for the purpose of indicating that an off-axis test can be used for
defining more than one parameter. The strains indicated by each gage in the rosette
are related to Cartesian (x—y) strains by the strain transformation relations in
Chapter 2. The relations between gage strain and the Cartesian strains are &, = ¢4,
&y = €c, and y,, = 2ep — €54 — &c, where €4, g, and gc are the strains indicated
by gages A, B, and C, respectively.
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Figure 4.31. Off-axis test specimen.
The normal stress o, and strain &, (from strain gage measurements) are related by
E, = o,/e.. E, 15 a function of fiber orientation, shown in equation (3.19) as

1 m* 1 2 4
_=_+(__ﬂ)mz,,2+"_
E, E| G2 E E,

Assuming that E;, Es, and vy are known, and that E, is defined from testing
the specimen of Figure 4.31, the only remaining unknown is Gz, which can be
determined from the foregoing equation.

The uniaxial state of stress results in a biaxial state of strain in the specimen.
Chamis and Sinclair {30] deduced from theoretical and experimental results that the
best angle for establishing G is 10°. The 10° angle was chosen since it minimizes
the effect of longitudinal and transverse tensile stress components oy and o3 on the
shear response. A comparison of the 10° off-axis procedure with other approaches
has shown it to produce reasonable results for in-plane shear properties {31]. The
simplicity of the 10° off-axis test for establishing G|; should not be taken for
granted, since problems can result from the specimen being orthotropic.

A uniaxial tensile stress in an orihotropic specimen can result in a shear-coupling
deformation as shown in Figure 4.32a. Constraints imposed on the specimen by
rigid clamping forces at the ends (Figure 4.32b) impose other testing difficul-
ties {32]. Clamping at the end of the specimen prohibits localized rotation and
produces a nonuniform strain field. A uniform strain field can be developed at
the center of the specimen provided L/w is sufficiently large [32]. The specimen
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Figure 4.32. Effects of end constraints on off-axis tensile specimens.
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length is considered to be the region between end tabs. The effect of shear coupling

can be defined by the shear coupling ratio, .y = ¥;y/&;. It can be shown that 5y,
is a function of the stiffness matrix such that

— — — 2
S](, 3 rwn2 566 S|6
vy — = 1+_ - = — =
", 2(1—) S Si

The relationship between the apparent modulus E? (established during testing) and
the actual modulus E, is

-1

E,=(1-mE; (4.21)

where

1 387,
- §1[ 33—66 + 2311(1-'/“’)2

As Lfw increases, 5 decreases and E, approaches E. The actual value of (L/w)
at which one can assume the shear coupling to be negligible is dependent on the
material system and fiber orientation being considered, as well as on the tolerable
error.

4, Tosipescu Shear Test. The losipescu shear test [33] is similar to an antisym-
metric four-point bend (AFPB) test method for composites [34]. The major differ-
ence is that for the losipescu test, the shear force through the test section is
equal to the applied load. The losipescu test fixture and specimen are shown in
Figure 4.33. This test procedure can be applied to composites for determining
material properties in the 1-2, 2-3, and 1-3 directions [35]. The appropriate
fiber orientations for determining in-plane and interlaminar properties are shown in
Figure 4,34, This test method is versatile and allows for determination of a wider
variety of material properties than other procedures. Analysis of the procedure
has led to the evolution of several specimen and fixture geometries. The Univer-
sity of Wyoming losipescu test specimen and fixture [36] is commonly accepted
as producing reliable results. Techniques for specimen preparation and modified
testing procedures to eliminate variability of results have been introduced by lLee
and Munro [37].

AR

P
Figure 4.33. Schematic of losipescu test fixture and specimen [35].
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In-plane shear strasses (2-1 and 1-2 plane)

%

Interaminar shear stresses
1-3 and 2-3 planes (20 lamina)

Figure 4.34. Specimen configurations for determination of shear properties from the
Tosipescu test procedure [{35].

5. [£45]3; Coupon Test. This procedure involves a uniaxial tension test of a
[t45]):; laminate, with strain gages. Although a biaxial rosette is sufficient, a
three-element rosette provides additional information that can be used to verify
the state of stress in the specimen. Specimen preparation and testing are identical
to a conventional tension test. A complete discussion of this procedure will not
be presented at this point since the specimen is a laminate. Further discussions of
this procedure are deferred until laminate analysis procedures are established in
Chapter 6. Results from the [+45];; test are in good agreement with those from
other procedures, and it is considered o be a reliable test configuration.

4.3.3.1 Summary of Shear Test Methods

A definitive conclusion as to which of the available procedures for establishing
shear properties is “best” would be difficult to defend, since some procedures
work better with one type of material than another. Evaluations of several proce-
dures [38] indicate that more than one procedure can be categorized as appropriate
for defining in-plane shear properties. Lee and Munro [37] attempted to eval-
uate nine experimental procedures for determining in-plane shear properties. They
established 11 criteria within four broad categories relating to a successful exper-
iment. These categories are fabrication cost, testing cost, data reproducibility,
and accuracy. Each criterion was rated from 0 to 10, with 10 the highest, and
a weighting function was applied to each. Both the rating and weighting functions
of each criteria are subject to author preference. Table 4.1 presents the raw score
and overall rating for each method discussed in Adams and Walrath [36]. Three
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of the procedures presented in Table 4.1 have not been discussed herein, but can
be found in the archival literature relating to composite materials testing.

Table 4.1. Evaluation of in-plane shear
test methods [37].

Test Procedure Raw Score Rating
Two-rail shear 6880 6
Three-rail shear 7200 4
| £45], 8030 1
10° off-axis 7860 3
Cross-beam 5890 9
Picture frame 6650 7
Thin-walled tube 6530 8
Slotted-tensile 6950 5
losipescu 8030 1

4.3.4 Flexure Tests

There are two commonly used loading conditions for flexure testing: three-point
and four-point bending. Each is shown schematically in Figure 4.35 with the
general specimen geometry. The L/4 load reaction position in the four-point bend
configuration is sometimes replaced by an L/3 reaction position. The L/4 location
is generally used with high-modulus materials (graphite/epoxy, boronfepoxy. etc.).
The objective of these tests is to determine flexure strength and maternial modulus
in specific directions. These tests are not recommended for generating design data.
The flexure test can be used to determine interlaminar shear properties.

Fiber orientations for determining
different elastic moduli

Ez

L =
L J S R ——

Specimen geometry
¢P
l | -

l >

e £ AL =

L——uz——l-;uzj L4 LW’
l—— /2 L2 —

3-point bend 4-point bend

Figure 4.35. Schematic of three-point and four-point bend tests.

Requirements for specific types of flexure tests (specimen dimensions, loading rate,
etc.) are given in ASTM D790-71. Unidirectional specimens with fibers oriented
at either 0° or 90° to the beam axis can be used to determine the elastic modulus
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of a material. The modulus along the beam axis of the specimen is generally
designated as E,, and, depending upon fiber orientation, corresponds to E; or
E;. The appropriate fiber orientations corresponding to estimates of E; and £;
for flexure specimens are shown in Figure 4.35. The recommended span to depth
ratio, L/h, for a flexure specimen depends on the ratio of tensile strength parallel
to the beam axis and interlaminar shear strength. For 0° specimens with a strength
ratio less than 8:1, the recommended £/h ratio is 16. For high-modulus materials
(such as graphite/epoxy or boronfepoxy) an L/h ratio of 32 is suggested. The
requirement on a 90° lamina is less severe, and L/# = 16 is generally acceptable
for all materials.

Estimating the modulus for 0° or 90° specimens requires knowing the deflec-
tion {w) of the center of the beam. Given the beam width (d), center span deflec-
tion {w), applied load (P), and beam length (L)}, the elastic modulus along the
beam axis (E,) for each configuration can be determined from strength of mate-
rials techniques. For the four-point bend specimen the deflection at mid-span
{(x =L/2) is Ecfw = 11PL%/768. For a beam with cross-sectional dimensions as
shown, I = bh®. This results in the elastic modulus for the beam being expressed
as E, = 11PL?/64bh*w. A similar approach is used for the three-point bend spec-
imen. If shear deformation is considered, these equations contain an additional
term. The predicted elastic modulus for each configuration {including shear defor-
mation) are as defined in Whitney et al, {i}

3

= 4w
3

E, =
64bh3w

E, (1+5) (three-point bend)

(4.22)

(11 + 8S) (four-point bend)

where § is the shear correction factor, which is a function of specimen geometry
and deformation. General definitions of the shear correction factor are found in
many strength of materials texts. For a rectangular cross-section the expression
for S is

_ 3K°E,

T 202G,

In this expression G,, is the shear modulus in the longitudinal plane through
the thickness of the specimen. It is difficult to determine and in many cases is not
adequately known. It can be neglected by allowing the shear correction factor (5) to
be set equal to zero, thus reducing the preceding equations to a simpler form. With
§ = 0 each of these expressions is a simple function of (L/#)>. In order to estimate
E,, a series of tests with increasing L/h ratios of the specimen are conducted. The
modulus E, for each test is computed, and when a constant E, is obtained between
several test specimens, the modulus is considered to have been determined.

An additional type of flexure test is the short beam shear test. Unlike the flexure
tests, this test is designed to estimate interlaminar shear strength only. There are
difficulties associated with it, and its overall value is questionable. The procedure
and specimen dimensions for this test are discussed in ASTM D2344.76. The
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specimen should be designed so that shear deformation effects are as large as
possible, and failure results from interlaminar shear stresses rather than normal
stresses. The ratio L/k should be small (L/h = 4 is suggested for graphite/epoxy),
and a three-point bend test is used. The specimen has a parabolic shear stress
distribution through the thickness, and the maximum shear stress may not be at
the mid-surface of the beam. For the shont beam shear test the interlaminar shear
strength is expressed as

3p
~ 4bh

where 1, is the maximum interlaminar shear stress, P is the applied load, and b
and h are the beam width and thickness, respectively.

Tm (4.23)

4.3.5 Failure Strengths

The failure strengths of unidirectional composites (lamina) can be determined from
the same tests used to estimate moduli. The failure strengths in the principal fiber
directions require both tensile and compressive tests. Shear strength, on the other
hand, is independent of load direction.

4.4 Physical Properties

The physical properties of a composite material system can be as important as
mechanical properties in assessing suitability for a particular application. The prop-
erties of most practical interest from a stress analysis point of view are density,
fiber volume fraction, and coefficients of thermal and hygral expansion. The general
procedures used to estimate these properties are highlighted in this section.

4.4.1 Density

The density can be determined by first preparing a specimen with a volume on the
order of ¥ > 1 cm® (0.061 in®). The procedure for estimating density is:

I, Accurately determine the specimen dimensions.
2. Weight the specimen in air. The weight of the specimen in air is designated
as a.

3, Weigh the specimen in water while suspending it by a wire. As part of this
step, the weight of the wire (used to suspend the specimen) and the sinker
{used to ensure that the specimen is submerged) must be taken into account.
Therefore, two additional terms must be accounted for: w, the weight of sinker
and immersed wire, and b the specimen weight +w.

4. Calculate the lamina density in mg/m’ from

0.9975a
at+w—~

where 0.9975 is a conversion factor from specific gravity to density.

A complete description of this procedure can be found in ASTM [792-66.
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4.4.2 Fiber Volume Fraction

In order to estimate the volume fraction of fibers in a given specimen, a series of
tests is required. Resulis from some of these tests are sensitive to measurements
taken during the experiment. The procedures to be followed are based on the
assumption that a small specimen has been prepared from a larger sample of the
lamina under investigation. The general procedures are:

1. Determine the weight of the composite sample (W) and its density (p.) as
described in the previous section.

2. Allow the matrix to be digested either by an acid bath or by burning it away.
The appropriate procedure is dictated by the fiber material. Graphite fibers, for
example, require acid digestion, while glass fibers can be burned.

3. After the matrix is removed, only the fiber remains. The fiber weight (W) and
density (p¢) must then be determined from procedures established in Section
4.4.1. The volume fraction of fiber is then estimated from

_ We/o
wc/ﬂc

vy

Similar procedures can be used to determine the volume fraction of voids. The
mass fractions of fiber and matrix, and their respective densities are required to
compute v,. Slight errors in measurements can lead to significant errors in estimates
of volume fractions. In estimating v, the relationship developed in Section 3.4 is

useful:
m m
n=1—p [—f + —m]
P Pm

4.4.3 Thermal Expansion and Moisture Swelling Coefficients

Coefficients of thermal expansion can be determined by using a dilatometer, or
strain gages. A dilatometer measures the elongation of a specimen subjected to
either high or low temperatures. The strains in the x and y directions (which could
represent the 1 and 2 directions of a lamina) can be determined by &, = Ax/b and
£y = Ay/a, where Ax and Ay are specimen deformations recorded by deflection
gages, and a and b are the lengths of each side. The strains could alternatively be
measured from strain gages. Each strain is plotted as a function of temperature, The
slope of the resulting curve in the linear portion of the graph is taken to represent
the coefficient of thermal expansion ¢, as illustrated in Figure 4.36. Different
expansion coefficients can be observed during heating and cooling cycles of a test
sequence.

The moisture swelling coefficients are determined in a manner analogous to that for
estimating thermal expansion coefficients. By measuring the volume change in a
specimen as a function of moisture weight gain, a plot similar to Figure 4.36 can be
established for moisture. The slope of the resulting curve represents the coefficient
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! o = AB/AT 7

Figure 4.36. Schematic for determination of a.

of expansion. Compilation of sufficient data to establish swelling coefficients can
be a long process, since temperature and humidity are coupled.

4.5 Material Properties of Selected Composites

Tables 4.2 and 4.3 present material properties for selected composite materials in
English and SI units, respectively. These tables are by no means comprehensive.
Many possible materials, such as thermoplastic, metal, and ceramic matrix systems,
have been omitted. Material properties for these types of composites can be found
in numerous references [39—41]. Some of the more common ¢poxy resin material
systems are presented. The primary references from which most data is taken are
cited. Entries marked by an asterisk are obtained from various references {42-44]
or from vendor-supplied data sheets. The following notations are used for strength
properties:

X, X' are tensile and compressive strength in 1-direction, respectively
Y, Y’ are tensile and compressive strength in 2-direction, respectively
s is shear strength

In Table 4.2 the notation Msi replaces the more familiar 10° psi notation commonly
associated with elastic modulus.

The entries in each table illustrate the variations that exist in reported proper-
ties for materials. This can, to some extent, be explained as a result of specimens
having different fiber volume fractions. Similarly, specimen preparation and testing
procedures can affect results. Material moduli, failure strength, and coefficients of
thermal and hygral expansion are dependent on testing environments. Many mate-
rial manufacturers supply mechanical data based on different test temperatures
and expansion coefficients for a range of temperatures. The data presented in
the tables herein are for room temperature test conditions. The thermal expan-
sion coefficients are based on a temperature range from room temperature to an
appropriale elevated temperature (typically 200°F). The lack of data for thermal
and hygral coefficients is apparent, but does not impty that this information is
unimportant.
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Material vy E E; Gyz viz X x’ ) 4 a4 ) o o A I
[reference] (Msi) {Msi) (Msi) (ksi) (ksi) (ksi) {ksi) (ksi)
Graphite/Epoxy

T)/5208 142} 0.70 26.27 1.49 1.04 028 217.7 217.7 5.80 35.7 9.86 0011 12.47 0.00 0.44
[43] Q.70 22.20 1.58 1.03 0.30 100.0 110.0 400 13.9 9.00 — —_ — —

T300/934 143} 0.60 23.70 1.70 0.93 0.30 107.0 105.0 — — 14.8 — — — —

T300/SP-286 [43) 0.60 21.90 1.53 0.96 0.31 185.6 362.6 8.80 447 15.2 — — — —

AS/3501 (421 0.66 19.90 1.29 1.03 0.30 210.0 210.0 1.50 299 13.5 =017 15.57 — —
{43) 0.67 20,02 1.30 1.03 0.30 2009 209.9 7.50 299 13.5 — — — —

Glass/Epoxy
Scotchply:
type 1002 [42] 0.54 5.60 1.20 0.60 0.26 154,1 88.5 4.50 17.1 10.5 4.77 12.24 — —
type 5P-250-529* 0.54 7.00 2.10 0.80 0.26 260.0 145.0 6.20 290 14.0 — — — —
E-Glass/Epoxy [43) 0.72 8.80 3.60 1.74 0.23 187.0 119.0 6.70 25.3 6.50  3.50° 11.4% — —
8-Glass/XP-251 0.67 8.29 2.92 0.86 0.262 289.0 170.0 11.00 29.0 900 360* it.1* — —
Boron/Epoxy

B(4)/5505 [42] 0.50 29.60 2.69 0811 0.23 183.0 363.0 8.90 293 970 338 16.79 — —

[43] 0.67 30,30 2.80 0.930 0.21 185.6 362.6 8.80 447 152 3.40% 16.9* — —
Aramid/Epoxy

Kevlar 49/Epoxy [42] 0.60 11.03 0.798 0.333 0.34 2032 34.1 1.74 7.69 493 -2.22 4377 — —

[43] 0.60 11.02 0.798 0334 034 203.1 34.1 1.74 7.69 493 2.2 39.0" — —

Nate: The units on the coefficients of thermal expansion are pinfin/F.
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Table 4.3. Material properties for selected composite material systems (SI units).

VL/_?_A.__\_\ P

Material vy Ey E3 G2 vi2 X X’ Y ¥! 5 o a2 B B2
[reference) (GPa) {GPa) (GPa) {MPa) {MPa) (MPa) (MPa) {MPa)
Graphite/Epoxy

T300/5208 [42] 0.70 i81.0 10.30 7.17 0.28 1500.0 1500.0 40.0 246.0 68.0 0.020 225 0.00 0.44
[43] 0.70 [53.0 16.90 5.60 0.30 689.5 758.5 27.6 86.5 62.1 — — — —

T300/934 [43] 0.60 163.0 11.80 6.50 0.30 738.0 724.0 — _ 102.0 — —_ —_ -
T3WSP-286 [43] 0.60 151.0 10.60 6.60 0.31 1401.0 11320 54,0 2110 720 — -— —_ —_
AS/3501 [42] 0.66 138.0 8.96 7.10 0.3¢ 1447.0 1447.0 517 206.0 930 -031 28.1 — —_
[43] 0.67 [38.0 8.96 7.10 0.30 1447.0 1447.0 51.7 206.0 93.0 — — —_ —

Glass/Epoxy
Scotchply:
type 1002 [42] 01.54 8.6 3.27 4.14 0.26 1062.0 610.0 31.0 118.0 72.0 8.6 22.1 — —_
type SP-250-829* .54 483 14.50 5.50 .26 1790.0 1000.0 43.0 200.0 97.0 — —_ —_ —_
E-Glass/Epoxy [43) 0.72 60.7 24.80 11.99 0.23 1288.0 820.5 459 174.4 44 8 6.5" 20.6* - —_
S-Glass/XP-251 0.67 57.2 20.10 5.90 0.262 1993.0 1172.0 76.0 200.0 62.0 6.6* 19.7* — —
Boron/Epoxy
B(4)/5505 [42] 0.50 204.0 18.50 5.59 0.23 1260.0 25000 61.0 202.0 67.0 6.1* 303 — —
[43]  0.67 2090 19.00 6.40 0.21 1280.0  2500.0 61.0 308.0 105.0 6.1* w3y — —
Aramid/Epoxy

Kevlar 49/Epoxy  [42] 0.60 76.0 5.50 2.30 0.34 1400.0 2350 120 53.0 40 -—40 79.0 — —
[43) 0.60 76.0 5.50 2,30 0.34 1400.0 235.0 12.0 53.0 M0 —-40° 70.0* — —

Note: The units on the coefficients of thermal expansion are pm/m/°C.

BURUE] 10] SPOMIIN 153], [SOIIRIRAN
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Table 4.4. Materia! properties of selected fibers and resins (English units).

Material Diameter Density Elastic Modulus v Tensile Strength o
[reference] {in x10—%) (1bfin) (Msi) (ksi) {(Win/inF)
FIBERS

E-Glass [45] 0.40 0.092 10.5 — 450.0 28
{46) 0.30-0.55 0.093 11.0 — 203.0-263.0 2.7

$-Glass [45] 0.40 0.090 12.3 — 650.0 —

Graphite [45] 0.20-0.40 0.053-0.065 35.0-100.0 — 250.0-500.0 L5

Carbon {46] 0.28-0.38 0.063-0.070 36.0-37.0 — 319.0-392.0 —0.05--0.67

(Pan-based)

Kevlar 4% 146] 0.468 0.052 18.0 — 406.0-522.0 —-1.1
[47) 0.470 0.052 18.0 — 406.0 —

Kevlar 29 |47] 0.470 0.052 9.5 — 406.0 —

Boron [42) 4.00 0.094 59.5 — 500.0 —
[45] 4.00 0.095 60.0 — 400.0 28

RESINS

Epoxy [45] — — 0.50 0.35 — 320
[46] — 0.039-0.051 0.44-0.88 0.38-040 51-145 33.0
[47] — 0.059 — — 51-123 44.0-55.0

Polyimid [45] — — 0.40 0.33 — 28.0-35.0
[47] — 0.053 — — 17.4 50.0

Polyester [46] — 0.430-0.540 0.35-0.65 0.37-0.39 5.8-130 55.0-110.0

Phenolic [47] — 0047 — — 7.2-8.0 2.5-6.1

¥l

sayisodwo) Jvupuey



Www.iran—-mav ad.com

NI . e b aseisls N
Slgo iy 9 Glgiils @2 5o

Table 4.5. Material properties of selected fibers and resins (SI units).

Material Diameter Density Elastic Modulus v Tensile Strength o
[reference] pm {kg/m®) (Gpa) (Mpa) pm/m/C)
FIBERS
E-Glass [45] 10.0 2547 72.3 — 3102 5.1
{46) 8.0-14.0 2560 76.0 —_ 14002500 49
S-Glass [45] 10.0 2491 84.8 — 4481 —
Graphite [45] 50-100 1467-1799 241.0-690.0 — 1720-3345 27
Carbon f46] 7.0-9.7 1750- 1950 250.0-390.0 — 2200-2700 —-0.10--1.20
{PAN-based)
Keviar 49 [46] 11.9 1430 125.0 — 2800 - 3600 =20
(47 12.0 1440 125.0 — 2800 —
Keviar 29 [47] 12.0 1440 65.0 — 2800 —
Boron [42] 100.0 2600 410.0 — 3450 —
[45] 100.0 2630 414.0 — 2758 5.1
RESINS
Epoxy [45] — — 35 0.35 — 58.0
[46] — 1100-1400 3.0-6.0 0.38-0.40 35-100 6.0
[47] — 1380 — — 35-85 80.0-110.0
Polyimid [45] — — 275 0.33 — 51.0-63.0
47 -— 1460 — — 120 90.0
Polyester [46] — 1200- 1500 2.0-45 1.37-039 40-90 100.0-200.0
Phenolic [47] — 1300 — — 50-53 45-11.0

BUTUIeT] 10} SPOYIAA 1S3L, [EITURYII
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4.6 Testing Lamina Constituents

Complete characterization of a composite material includes fiber and matrix prop-
erties. Both physical and mechanical properties are determinable in many cases.
Because the constituent materials are typically isotropic, some of the complex-
ities of testing orthotropic lamina are reduced, while some tests applicable to
lamina are not appropriate for the constituents. For example, compression testing
of single fibers cannot be accomplished. Tensile testing of fibers, however, is
a well-established procedure as discussed in detail in ASTM D3379-75. Special
test fixtures, such as the one schematically shown in Figure 4.37, as well as data
reduction procedures are required for testing fibers.

specimen fixture
- Sy »
% — — %

P —

Figure 4.37. Schematic of test fixture for fibers.

Since fibers can only be tested in tension, the basic properties generally estab-
lished for resin sysiems are tensile. The procedures for testing different polymeric
resin systems depend on the availability of the material as either a thick sheet or
thin film. The test procedures and specimen configurations for thick sheet forms
of material are detailed in ASTM D638-72. Similar information corresponding
to thin film material is available in ASTM D882-73. An appropriate procedure
for characterizing them depends on their general classification as elastic, plastic,
viscoelastic, etc. Tables 4.4 and 4.5 present a range of values for some of the phys-
ical and mechanical properties of selected fibers and resins systems in English and
SI units, respectively.
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Problems

Assume that a uniaxial strain gage is mounted on a unidirectional tensile
specimen made of T300/5208 graphite/epoxy. The gage is oriented as shown
and the specimen is subjected to an applied load o¢ as indicated. Determine
the percent error resulting from neglecting transverse sensitivity for

(A) K=040% (B) K=-15%

B s infipinfulinl < -

o Sa

The strain gage of Problem 4.1 is applied to a T300/5208 graphite/epoxy spec-
imen as indicated. Determine the percent error which results from neglecting
the transverse sensitivity for

(A K=040% (B) K =-1.5%

-———  ipigtpty ——-

% (i1 o
A uniaxial strain gage is used to measure the maximum tensile strain on the
outside surface of a closed-end pressure vessel subjected to an internal pressure
P. The vessel is made from a unidirectional graphitefepoxy (AS/3501) with its
fibers oriented along the longitudinal axis of the vessel. Determine the percent

error resulting if transverse sensitivity is neglected. [Hint: Determine the state
of stress in the vessel using classical thin-walled pressure vessel theory.]

(A) K=040% (B) K=-1.5%
The results from a uniaxial tension test on AS/3501 graphite/epoxy are
presented below. Find E,, E3, vi2, vi2, X, and ¥,

250 7 TTr 1 1T 10 T T 1T [ T TTT
Ep £, - L 4
200 1 8 - -
2 s} - g 6t .
0 @
o @
@ b p @ - 4
n 7]
T 100 1 @ 4 —
2 _ < | ]
50 1 2+ =
0 0 T S S 0 N ) Y B I o T S N N S B
V] 5000 10,000 15,000 4] 5000 10,000

Axial Strain (pinfin) Axial Strain {pin/in}
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The four-point bend sandwich beam compression test is schematically shown
in Figure 4.25. In the region of the beam where the bending moment is
constant, the forces in both top and bottom layers can be modeled as shown.
The bending moment at section A—A in this section can be expressed in terms
of the applied load P and the beam length L.

(A) Determine the relationship berween Fy, F, 1, h, ', and the bending
moment at section A—A expressed in terms of P and L.
(B) Assuming that F; = F3, determine the expression for E, which is known

to be
PL

E =
4bh(2t + k+ 1 )e,

~ ~ 2 ~ -~ P2
/ Prz2 P2 - s
/ L4 L4 S e oA
f L { A J h 1 4
)

|
! . Fy
gunma.aune )
A A / _* E{ M
N\ G—#L—p A
\\p}z // Pi2 [—L/2
—— P2

The Iosipescn shear test is schematically shown in Figure 4.33. A schematic

of the loads that the fixture transmits to the specimen is shown in Fig. A; a

schematic of the loads experienced by the specimen is shown in Fig. B.

(A) Use Fig. A to venify that P} = Pa/(a — b) and P> = pb/{a — b).

(B} Use Fig. B to show that the specimen test section (the vertical plane
through the notch) experiences a shear force equal to the applied load P
and no bending.

P Fig. A Fig. B

2 Py

l 1A L S
Py Pa \? . | h

b2 e b J ¥
2 L Py ) P2

A schematic diagram for the asymmetrical four-point bend (AFPB) shear
loading fixture [34] is shown below. For this test configuration, verify that
the shear force in the specimen test section (the vertical plane through the
notch) is given as

a—b

a+b

V=rp



Www.iran—-mav ad.com

olge war Mechamdcal Test, Methods for Lamina 141

P
a/2 b2

\l/
/’:\
S R R

b2 a2
P

4.8 Experimental data from thermal expansion tests are presented betow for three
types of materials. From this data, determine the coefficients of thermal expan-
sion for each material.

20000_[ T Yy 1r 1717 111 I 7T T TTT1TT1 71 I T T T U T T 7T F T I T r 1 [ 1 U¥F I_‘
15000 —— Kevlar 1-direction 7]
= o -~ Kevlar 2-direction 4
= - -~ S-Glass 1-direction ]
3, 10000~ -a- S-Glass 2-direction ]
- T — - Graphite 1-direction ]
= L - Graphite 2-direction ]
& 5000 ]
o - - T D0 ]
_I I I I O Y I | l [ T I | I PO N T N N I N I | l | I U I W | I-‘

4} 100 200 300 400

Temperature {°F)
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LAMINA FAILURE THEORIES

5.1 Introduction

The bond between adjacent lamina in a laminated composite is assumed to be
perfect and is not considered when discussing in-plane failure theories. Special
consideration is given to failures involving interlaminar stress, which is beyond
the scope of this text. Models and analysis techniques used to address interlaminal
failure are summarized by Pagano [1].

The mechanisms for complete laminate failure are best understood by first consid-
ering lamina failure. Fiber orientations of adjacent lamina in a laminate may be
different; thus, the apparent stiffness in specific directions may vary through the
laminate. The state of stress experienced by individual lamina can be correlated to
the effective stiffness of the lamina. Early efforts by the paper products industry to
predict failures in orthotropic materials led to current failure theories for composite
materials. Detailed reviews of many failure theories have been presented [2-8].
None of the orthotropic failure theories currently available are considered accurate
enough to be used as a sole performance predictor in design. They all tend to be
phenomenological and empirical in nature rather than mechanistic.

Failure of a unidirectional laminate begins on the microscopic level. Initial micro-
scopic failures can be represented by local failure modes, such as:

e Fiber failure — breakage, microbuckling, dewetting
e Bulk matrix failure — voids, crazing
e Interface/flaw dominated failures — crack propagation and edge delamination

Microscopic failures can become macroscopic and result in catastrophic failure.
The general nature of failure for orthotropic materials is more complicated than
for an isotropic material. Consider, for example, the state of stress indicated in
Figure 5.1. If the material were isotropic, a simple Mohr’s circle analysis would
yield the principal stresses shown and 6, = 31.7°. Mohr’s circle analysis of strain
results in the same principal angle.

142
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A 500 psi
~&—+— 500 psi 1310 psi

191 psi gep
, i 1000 psi o

— >

v A |

Figure 5.1. Mohr’s circle for a simple state of plane stress.

Alternatively, consider an orthotropic material subjected to the same applied
stresses. The assumed compliance matrix for this material and the resulting strains
€1, €2, and yip are

4 -1 O 1000 35
[S1= [—1 100 O } x 1078 (e} =[S] { 500} = { 490 } pin/in
0 0 200 500 1000

A Mohr’s circle analysis would show a principal angle different from that of an
isotropic material, indicating that analysis techniques valid for isotropic materials
are not adequate for composites.

A lamina is stronger in the fiber direction than in the transverse direction. The
largest stress on the lamina may not be the one that causes failure. Assume the
failure stresses are as follows:

X = Maximum failure strength in 1-direction = 50 ksi
Y = Maximum failure strength in 2-direction = 1 ksi

S = Maximum shear failure strength = 2 ksi

The state of stress is assumed to be

(23] 45
{02 } ={ > } s
T12 1

It is obvious that failure in the 1-direction (maximum stress direction) will not
occur, but in the 2-direction it will.

There are numerous theories for predicting lamina failure, a summary of which is
given in Rowlands [2]. In this text two failure theories are considered in detail. In
the following discussions, the notation is used for identifying failure strength in
various directions:

X,X’: Maximum tensile and compressive failure strengths in the longitudinal (fiber)
direction

Y.Y’: Maximum tensile and compressive failure strengths in the transverse (X3)
direction

S: Maximum shear failure strength
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The prime (') denotes compression. Tensile and compressive failure strengths of
continuous fiber laminates are generally different. The sign of an applied shear
stress does not influence the failure strength in shear, but can affect predicted
failure loads.

5.2 Maximum Stress Theory

This theory is commonly attributed to C. F. Jenkins [9], and is an extension of
the maximum normal stress theory for the failure of orthotropic materials (such as
wood). Consider a lamina subjected to uniaxial tension as shown in Figure 5.2. For
a failure to occur according to the maximum stress theory, one of three possible
conditions must be met:

o1>X, 0>Y, m12=8 ¢.n

) A
b _

Oy /_< 9 Oy
-——— [————

X

Figure 5.2. Uniaxial tension for a unidirectional lamina.

In this case the stresses in the principal material directions are

o) oy m2  n? 2mn Oy m?
{02}=[Ta]{0}= n? m* —2mn {O}: n* }o,
T12 0 —mn mn m?—n? 0 —mn

where m = cosf and n = sinf. To ensure that failure does not occur under the
conditions represented in equation (5.1), the stresses in the principal material direc-
tions must be less than the respective strengths in those directions such that
< X < Y < S
o o o _
*~cos20 * " sin’6  ~ sinfcosh

If the applied stresses were compressive, the X and Y would be replaced by X’
and Y’, so that the failure conditions become

a>X, op>Y (5.2)

The failure criterion for shear remains unchanged, since § is independent of the
sign of the applied shear stress.

If any one of the inequalities is not satisfied, it is assumed that failure occurs.
In cases of multiaxial stress, the simple relationships just given are no longer
valid. The relationship between applied stress components and principal mate-
rial direction stresses must be determined through stress transformation, while the
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inequalities in equations (5.1) and (5.2) remain valid. For example, assume a general
state of stress in which oy, o, and 1, exist. The principal direction stresses and
condition for failure to occur for this case are

o1 = mPo, + nzoy +2mnty, > X
0, = n’o, + m20y —2mnt, > Y

12 = (0y — o )mn + (m* —n’)ty > §

5.3 Maximum Strain Theory

The maximum strain failure criteria is an extension of St. Venant’s maximum strain
theory to accommodate orthotropic material behavior. The maximum strain failure
theory is expressed as

e1<X,e1>X, ea<Y,e>Y,, y=<S$ (5.3)

where X Y S X’ Y’
X,=— Y, =— §;=— X ="— Y =— 5.4
*TE T E, Y G ¢ E ) ©9

For a case of uniaxial tension as in Figure 5.2,

1 ( ) 1 ( ) T12
g1 = —(01 —vpor) &= —(02—wWo1) Yi2=—""
E ! E, G

The principal material direction stresses are o, = m?0y, 03 = n’oy, and 135 =
—mno,. Therefore, it is a simple matter to show that

m? — vin? n? — vyym? —mn

§1l=———0y &=——7""0x Y= G
12

O,
E, E, x

From these relationships it is easy to show that in order to avoid failure for a
condition of uniaxial tension, the following conditions must be checked:

X Y
o, < Oy < —

oy < = 5
n2 —vy,m? mn

- m2 - v12n2
The maximum stress and strain failure theories generally yield different results and
are not extremely accurate. They are often used because of their simplicity. As
with the maximum stress theory, a more complex state of stress results in different
expressions. As discussed in the previous section, a more general state of stress
results in a more complex representation of £;, &7, and ;.

Example 5.1. The composite reinforced pressure vessel in Example 3.3 is consid-
ered again. The analysis presented here incorporates actual material properties as
defined in Table 4.2. The analysis procedure in Example 3.3 relating normal stress
(o) to reinforcement spacing (s) is used in this example with o, = 7200s. It is
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assumed that the vessel has failed and the reinforcements sustain all circumferen-
tial loads originally carried by the vessel as illustrated in Figure ES.1-1. Both the
maximum stress and strain failure theories are investigated. Assume the reinforce-
ments are E-glass/epoxy. Because of the state of stress, only tensile failure strengths
are considered, with X = 187 ksi, ¥ = 6.7 ksi, and § = 6.5 ksi. Comresponding to
these are the failure strengths for maximum strain failure established from equa-
tion (5.4). For some fiber orientations the normal strain may be compressive, so
both tensile and compressive properties are required.

X =21,250 uin/in ¥, = 1861 pinfin §, = 3767 ninfin
X, = 13,523 pinfin Y, = 7027 pin/in

o TH

Figure E5.1-1. Assumed stress in pressure vessel reinforcements.

The analysis for failure due to the maximum stress theory is simple since only
the principal direction stresses are required. Using the stress transformations from
Chapter 2, the failure criteria for the maximum stress theory are

o 187,000 72005 m?
{O’g}={ 6700 }=[TUJ{ 0 }={ n? }(72005)
Tiz 6500 0 —mn
25,970 m?
=>{CL931}={ n? }s
0.903 —mn
The solution of each possible failure depends on fiber orientation, so no unique
solution exists. The spacing depends on which failure criterion is met first at a

particular fiber orientation. Recalling that m = cos8 and n = sinf), we denote the
fiber spacing according to which stress component satisfies the failure condition by

o, controlled: s = 25,970/ cos? @
o controlled: s = 0.931/sin? @
712 controlled: s = 0.903/ sin8cos @
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Figure E5.1-2 shows the fiber spacing as a function of fiber orientation for each
failure mode. The spacing which could be used is obtained by taking the minimum
spacing for each angle considered, as shown in Figure E5.1-3. At 0° the spacing
associated with oy is required, since all other solutions predict that s = co. Up to
45° the 1), controlled failure predicts the appropriate spacing, and from 45° to 90°
the o controlled spacing is appropriate.

g T < T f
g  ao 7
()
‘% 30 —Or o, controlled
5 g --/y - o controlled
E - \ -
] 20 —{1- o, controlled
5 A
€ 10— a_ “n A
= .

B Do, iag
T [P a-gaenp-ag@--BE 1.,

0 10 20 30 40 50 60 70 20 90
Fiber QOrientation {degrees)

Figure ES.I-2. Reinforcement spacing for each component of the maximum stress failure
theory.

30 T T T T T T T
25 —

20 -

10 - —

| 4 } | !

0 ¢ 20 30 40 50 60 70 80 90

Reinfarcemeant Spacing (in}
&
I
|

Fiber Orientation {degrees)
Figure E5.1-3. Reinforcement spacing from maximum stress theory.

The strains in the principal material directions are related to the stresses through
the relationships in Chapter 2. Recall that

€1 g1
Y12 T12
where [§] is a function of fiber orientation. The principal material direction stresses

are related 1o the applied stresses through the stress transformation relations.
Coupling this with the preceding relationship, the maximum strain failure theory
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is written as

X, £y m? m?
{YE} < { & }:{31 n? Yo, =[851{ n? } (7200s)

S, Yi2 —mn —mn

For some fiber orientations ¥, must be replaced with ¥ since the strain in the 2-
direction is compressive. Reinforcement spacing as a function of fiber orientation
is shown in Figure E5.1-4. This curve is similar to that presented for the maximum
stress theory. A direct correlation of the maximum stress and strain theories indi-
cates that they predict virtually identical results, as shown in Figure E5.1-5.

£

|

[ =) -
S

a —(O &, controled

2 -a- £y controlled B
@ -0 controlled

g iF: N
@

e

o

k=

@

o

Fiber Qrientation (degrees)

Figure E5.1-4. Reinforcement spacing for each component of the maximum strain failure
theory.

T | I I | 1 T I
o 25 ]
j= |
2 200 o ]
() \ - - Strain Failure
js' 1541 -&  Stress Failure —
E \
3 10 & ]
£
= 5 o) ]
] -
o - o S

0 1 A e ot ' S-St EETEEY T 2P W

o 10 20 30 40 50 &0 70 8¢ 90
Fiber Crientation (degrees)
Figure ES5.1-5. Reinforcement spacing from maximum stress and strain theories.
This close correlation is not always observed when comparing the two theories.

The state of stress in the component plays a more significant role in defining the
state of strain than may be evident from this example.
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o

15 ksi 1
2 .
10 ksi

10 ksi

Figure ES5.2. Multiaxial state of stress.

Example 5.2. Assume the lamina shown in Figure E5.2 is subjected to the multi-
axial state of stress indicated.

The stresses in the principal material directions are

ay F m? n? 2mn —-10
{ az } = n m?  —2mn { 15}
T2 | —mn mn m? — n? 10

025 075 0.866 -10 17.41
=1 075 025 “0.866] { 15} = {—12.41 }ksi

L —0.433 0433 -05 10 5825

The matenal properties and failure strengths are assumed to be

Ey=842x10°psi E;=2.00x 10%psi G2=077x108psi v, = 0.293
X =136ksi X' = 280ksi Y =4ksi Y’ =20ksi
5§ =6ksi

When the preceding stresses are compared to these failure strengths, it is evident
that no failure has occurred according to the maximum stress theory. For complete-
ness, however, the failure strains should also be checked. The stresses just given
can be used to determine the principal direction strains by using the compliance
matrix so that

&1 Su S 0 17.41
{ £ } = l:SI:! S O ] {—12.41 }
Y12 0 0  Ses 5.825
1.2 —-635 ¢ i17.41
= [—0.35 5 0 ] x 1077 { —12.41 } x 10°
0 0 12.9 5.825
2536
= { —6814 } pinfin
7518
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The failure strains associated with this material are

X Y
Xe = — = 16,152 pin/in ¥, = — = 10,000 pinv/in
E E;

S
S = —— = 7792 pin/in
G2

A comparison of the failure strains with those resulting from the applied state of
stress shows that failure does not occur. In each case the shear term (either strain
or stress) was the closest to failure. This result brings to light some interesting
aspects of shear failures, and the general importance of shear stresses.

5.4 The Significance of Shear Stress

Unlike tension or compression, shear failures are not distinguishable as being either
tensile or compressive since the shear failure strength is independent of the sign
of t. Consider the lamina shown in Figure 5.3a, with fibers oriented at § = —45°,

and a positive shear stress v applied. The stresses in the 1-2 material plane are
as shown in Figure 5.3b and are

o ax 025 025 -~1 0 -7
{62}=[Ta]{0y}=l0.25 0.25 1:[{0}:{r}
T12 Tay 65 =05 ¢ T 0

2
/ \ /02=‘E
< é

J \01 .
1
(b)

Figure 5.3. Pure shear with v and 8 = —d45",

7

The signs of these stresses indicate that failure is likely to be matrix dominated
and occur in the 2-direction since its failure strength is much lower than that in
the 1-direction. If the material is the same as that used in Example 5.2, the shear
stress that would cause failure is t > 4 ksi.

If the direction of the applied shear stress is reversed so that t = —t (as shown in
Figure 5.4a), and the angle 8 = —45° is maintained, the principal material direction
stresses illustrated in Figure 5.4b and are

g o, 025 025 -1 0 T
{02}=[Ta]{ay}=[0.25 0.25 1}{0}={—r}
T2 Tay 0.5 =05 0 -1 0
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o

(b}

(@)

Figure 5.4. Pure shear with —t and 8 = —45°,

For this case there is a tensile stress in the 1-direction and a compressive stress in
the 2-direction. Referring to the failure stresses of Example 5.2, this indicates that
failure occurs for v = 20 ksi.

Shear stress can play a significant role in lamina failure, since it contributes to
both the magnitude and sign of stresses in various directions. Although the sign
of the applied shear stress does not affect the shear failure strength (8), there is
interaction between stress components and the associated failure of a composite
lamina.

Example 5.3. Assume a state of pure shear stress on an element of unidirectional
lamina for which the fiber orientation is arbitrary (either +& or —8) as illustrated
in Figure E5.3-1. The applied stress is assumed to be either positive as shown, or
negative. We wish to determine the stress required to cause failure as a function
of 8.

Figure E5.3-1. Pure shear on an element with arbitrary fiber orientation.

Assume this lamina is made of the material in Example 5.2. The stresses in the
principal material directions are established from equation (2.3) to be

a) 0 2mn
{02}:[7",,]{ 0 }{ —2mn }r,y
12 Tay m® — n?

Analysis of +6 fiber orientations: A +6 fiber orientation resulis in a tensile o
and compressive ¢;. Using the maximum stress theory with the failure strengths
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of the previous example, three possible failure conditions result:

X _68
2mn mn
Tey = Y =E
Y= 2mn mn
S _ 6
mt—n2  mi—nl

Analysis of —6 fiber orientations: A —¢ fiber orientation results in a compressive
oy and tensile o;. The three resulting failure conditions are

140

mn
2

I.I_}’ S mn

6

2 _pl

m

Substituting varicus values of € into these equations results in failures that are
predominantly controlled by the shear stress failure condition §/(m? — n?). For
some fiber orientations, however, failure is controlled by the appropriate o, failure
condition of either ¥ /2 mn or Y'/2 mn. This is illustrated in Figure E5.3-2 by a
plot of the shear stress required to produce failure as a function of 8. The applied
shear stress required to produce failure is dependent on both the direction of the
applied shear and fiber crientation 6. A similar set of results can be obtained using
the maximum strain fatlure theory.

ao I T ] T I T r T [ T ] T ] T ] T [
20 @ T =Y/2mnor Y/2mn . oo |
O - Ty = S{mZ-n2) J/ t
= 10— @ ! =
£ e-6eoa0® ||
= 0 K .‘ ]
® 'O-@'..-.‘-.“ ! o0
—10 Fe) ]
&
7, ) S T VA S TN AN SN SN SN U ENS TR N S SN T |
-80 -60 40 -20 4] 20 40 60 80

Fiber QOrientation {degrees)

Figure E5.3-2. Applied shear stress vs 0 required to produce failure of a lamina with
arbitrary fiber orientations.

5.5 Interactive Failure Theories

The interaction of stress components was partially illustrated in Example 5.3.
Initial efforts to formulate an interactive failure criterion are credited to Hill [10]
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in 1950. Since then others have proposed modifications to the initial theory. Some
interactive failure theories are complicated, and in certain cases the amount of
work needed to define critical parameters for a specific theory exceeds the benefit
of using it. The general form of a majority of these theories can be put into one
of two categories, each of which has a different form. These criteria and their
associated failure theories are expressed in tensor notation below.

Criterion Theory

Fijo0; =1 Ashkenazi [11], Chamis [12], Fischer [13], Tsai—Hill
{14], Norris [15]

Fijoi0; + Fio; =1 Cowin [16], Hoffman [17], Malmeister [18], Marin [19],
Tsai—Wu [20], Gol’denblat—Kopnov [21]

Each theory is summarized Tables 5.1 and 5.2. The fundamental difference in
each is the extent to which the terms F; and F; are defined. The interactive term
F15 can be influential in predicting failure and is often difficult to experimentally
define.

Table 5.1. Summary of interactive failure theories governed by Fijoio0; =
WF110% + Fy05 + Festy, + 2F 13010, = 1) (after [2]).

Theory Fu Fn F12 Feo
Ashk R 1 1 174 1 1 1 1
shkenaz — — - - - = =
o e Y2 2l TR 5
. 1 1 K\K/ 1
Chamis — — — —
[12) X2 Y 2XY 52
Fish 1 1 K 1
1sner ey — —_—
[13] x? Y2 2XY 52
1 1 i 1
Tsai—Hill — — - —
1 1 K 1
Norris* — — - —

*An additional condition in the Norris theory is that 07 = X2 and 02 = ¥2.

_ _(+4vp —vi3)En + (1 - v3)En _ A +v)En + (0 —-v)En
VENE2 Q2 +viz +v13)2 + v21 + v23) 2VEHER(T +vi2)(T + v21)

K

K = experimentally determined correlation coefficient.
U = longitudinal strength of a 45° off-axis coupon.

The interactive theories presented here are not the only ones available for compos-
ites. Energy formulations as well as complete laminate theories (as opposed to
isolating individual lamina) have been proposed. For example, Petit and Waddoups
[22] extended the conventional maximum strain theory to include nonlinear terms.
Sandhu [23] formulated a parallel failure theory based on energy methods. Puppo
and Evensen [24] postulated a failure theory directly applicable to the entire lami-
nate. Similarly, Wu and Scheriblein [25] formulated a tensor polynomial for direct
laminate failure evaluation. A more detailed discussion of many of these theories
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Table 5.2. Summary of interactive failure thoeories governed by Fio, + Fyjoio; = 1(F110% + F205 + Fesv3, + 2F 120102 + F101 + F20, = 1)
(after [2]).

Theory F F; F11 Fp Fy2 Fes
Comin 1 1 1 1 1 1 282 /FiiFn -1 1
161 XX YV XX’ Yvy 287 52
11 11 1 1 1 i
Hofftnan X X I XX Y Taxx s
Malmeister 1 1 1 1 1 1 Sis [(F1 — F2) + (Sis)(Fui+ F)] — 1 1
[18] X X Y v XX’ Yy 2(855)? s?
Main 1 1 11 1 1 XX -S[X -X-X'(X/Y)+Y]
[19] X X Y XX X' Yy XX/ 282XX’
1 1 1 1 1 1 1
Tsai—Wu = - - — — —_— < +4/F11F2 and is determined ol
[20] X X Yy v XX ry’ under biaxial stress §
Gol'denblat 1/1 1 1/1 1 1/1 1)2 1(1 1\? 1 1+12+(1+L)2 <1+1)2 1
offemvats . 2\ X X 2\7 "V iI\Xx  x AI\vy v s I\x T x Yy v Sas S, 5
Kopnov [21] 45

*Sas and S, are the shear strength of the 45° coupon subjected to positive and negative shear.

142}

sayisoduio) Jeurue]



www.iran—-mavad.com

lgs pwiiss g oLgzisls bamina Failure Theories 155

is presented in Rowlands [2]. Thé Tsai—Hill and Tsai—Wau interactive failure theo-
ries considered to be representative of those from each category and are discussed
herein.

5.5.1 Tsai-Hill (Maximum Work) Theory

The Tsai—Hill theory [14] is considered an extension of the Von Mises failure
criterion. The failure strengths in the principal material directions are assumed to
be known. The tensor form of this criterion is F;jo;0; = 1. If this expression is
expanded and the F;; terms replaced by letters, the failure criterion is

F(02 = 03)" + G(o3 — 01)* + H (01 = 02)" + 2(Ltjy + MT{; + N133) = 1
Expanding and collecting terms,
(G + H)o? + (F + H)o} + (F + G)o; — 2[Ho10, + Foy03 + Goy03]
+2[Lty; + Ml + Nth] = 1
where F, G, H, L, M, and N are anisotropic material strength parameters.

The failure strength in the principal material directions are represented by X,
Y, and Z. Application of a uniaxial tensile stress in each of the three principal
material directions while keeping all other stresses zero (ie., o) # 0, 0, = 03 =
712 = 713 = Tr3 = 0) yields

1 1 1
These expressions can be solved for the unknowns G, H, and F:
1 1 1 1 1 1 1 1 1
2H=}F+W—i 2G=F—?§+? 2F:_F+ﬁ+?

Assuming a state of plane stress (o3 = T13 = T3 = 0) the failure theory is
written as

(G + H)ol + (F + H)o3 — 2Hoy07 + 2N12, = 1
Go? + Hot + Fo? + Ho? —2Hoy00 + 2Nt5, =1
G012 + F(722+H(c71 — 0y)? +2N'r122 =1

Application of a pure shear stress 112, with o7 = 03 = 0, results in an expression
for the only remaining parameter, N:

1

Substitution of the failure parameters F, G, H, and N into the plane stress failure
criterion yields

)= () (3 (5) -
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Figure 5.5. Schematic of 2- and 3-directions in a lamina.

The primary load-resisting constituent in the 2 and 3 directions is the matrix, as
illustrated in Figure 5.5.

Therefore, Y = Z and the above expression simplifies to the plane stress form of
the Tsai~Hill failure theory

2 2 2
X x Tty =l G5

Sometimes it is convenient to express the stress and strength in terms of stress and
strength ratios. The stress and strength ratios for plane stress can be written as

Stress ratios: p=0y,/0y q=Tyy/0;
Strength ratios: r =X/Y S=X/S§

Using stress ratios the Tsai-Hill failure theory is written as
ol —oo + r’o + s*t%, = X* 5.6)

It is generally assumed that the strength and stress ratio remains constant as the
lamina loads increase. Consider the simple case of an off-axis lamina subjected
to an axial stress o, (refer to Figure 5.2). The parameters p and g are both zero,
since only an axial stress o, is applied. Therefore, with p = g = 0, the stresses in
the principal material directions are

g1 m2
oy v=< n? o,
T12 —mn

Substituting these into equation (5.5) and using the strength ratios results in

x\2
m* + (5% — Dm?n? 4 r’n* = (—)

UX
Solving for the applied stress o, yields
o = X
* Vm4 + (52 — )m2n? + r2n*

For the special case of 6 = 0° this reduces to g, = X. In a similar manner, if
6 = 90° this expression becomes g, = Y.



Www.iran—-mav ad.com

slge fpwaigs 5 Lg=zils Lamina Failure Theories 157
Example 5.4. The maximum stress and Tsai—Hill theories are investigated for
pure shear. The lamina under consideration is assumed to have an arbitrary fiber
orientation of either —0 or +6, as shown in Figure E5.4—1. The material is
glass/epoxy with E; = 7.8 x 10 psi, E; = 2.6 x 10° psi, G1, = 1.25 x 10° psi,
vip = 0.25, and failure strengths X = X’ = 150 ksi, ¥ = 4 ksi, y = 20 ksi, and
S = 8 ksi. The stresses in the 1-2 plane based on an applied shear stress of

—T are
oy 0 —2mn
{02}=[T,,]{0}={ 2mn }r
T2 -7 n2 — m2

Figure E5.4-1. Pure shear with an arbitrary fiber orientation.

The tensile and compressive components of stress change with €. For a positive
angle, oy is compressive and o, tensile. For a negative angle, o, is tensile and o
compressive. The shear stress 7j; will not change sign as 6 changes from positive
to negative, but it will change sign based on the angle itself. Since X = X', the
sign of o is not significant, but the sign of o, will dictate which failure strength
(Y or Y’) is used for the 2-direction.

Maximum Stress Criterion. In the maximum stress criterion, four failure condi-
tions must be checked. For materials in which X # X', a fifth condition is required.
Each condition is a function of 6:

oy = 150,000 = —2mnt 7 =75,000/mn (for all )
oy =4000 =2mnt T = 2000/mn (for +6)
o, = 20,000 =2mnt T = 10,000/mn (for —0)

712 = 8000 — (n? —m?) 1 =8000/(n> —m?) (for all §)

Tsai—Hill Criterion. The Tsai-Hill criterion requires only one equation to establish
failure. Substituting the stresses and failure strengths for this case into equa-
tion (5.5) yields the failure criteria. The governing equation depends on the sign
of o7, since it is the only stress component having two failure strengths (for this
material).

+0: oy is compressive and o, is tensile, and the failure equation is

(=2mno\? QCmnt)(~2mnr) 2mnt\? (n? — m?)?\? 2
(150)’ 1502 +<4)+( 8 )t_l
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) 150\? )
(—2mnt)" — Cmnt)(—2mnt) + e (2mnt)

150\ 2
+ (T) (n? — m*)%? = (150 x 10°)?
72[5633m*n? + 351.6(n* — m*)?] = 2.25 x 10'°

—0: o0 is tensile and o, is compressive, and the failure equation is

((2mnr))2_ Cmnt)(—2mnt) —2mnt\? (n? — m?)? 2 2
150 1502 (20>+( 8 )r—

2
(2mnt)* — 2mnt)(=2mn7) + (%) (—2mnt)?

1 2
+ (—§9> (n? — m?)?t? = (150 x 10%)?

12[233m*n? + 351.6(n® — m*)?] = 2.25 x 10'°

Solutions for the maximum stress criteria result in sign changes for t similar to
those in Example 5.2. Solutions for the Tsai—Hill criteria yield two roots for ©
for each angle. To compare these theories, absolute value |z} vs 6 is plotted in
Figure E5.4-2. The Tsai—Hill theory produces a more uniform curve of |t| vs 6
than the maximum stress theory. For negative fiber angles the stress required
to produce failure is greater than for positive angles. Depending on the fiber
orientation angle, the maximum stress criterion will be controlled by either o,
or 7. The regions in which either shear or normal stress control failure for the
maximum stress criterion are established by examination of the failure criteria
at each angle. For example, 8 = 10°, for which cos 10° = 0.9848 and sin 10° =
0.1736. Comparing the o, and the shear it is easy to see that

2000 8000

- =11,100psi T=——""" ___ _ 8500 psi
(0.9848)(0.1736) PSL T = 10,030 — 0.9698) pst

02

Therefore, the failure is shear controlled at this angle.

From Table 5.1, the primary difference between failure theories is the form of
the interactive term, F';;. The Ashkenazi [11] and Chamis [12] theories require
experimentally determined parameters not generally defined when X, X', Y, Y,
and S are established. In the case of uniaxial tension applied to a lamina with a
fiber orientation of 45°, it is easily shown that very little difference in predicted
failure load exists between the theories. This is due primarily to the magnitude
of Fy, as compared to the other terms. For fiber orientations other than 45° the
same conclusion may not be valid. The influence of an interactive term on lamina
failure is better observed in the Tsai—Wu theory developed in the next section.
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Figure E5.4-2. Comparison maximum stress and Tsai— Hill failure criteria for pure shear.
The Tsai—Hill theory can also be formulated based on strains, by incorporating

the appropriate relationships between principal direction strains and stresses and
the failure strains (X, = X/E|, etc.), and substituting into equation (5.5).

5.5.2 Tsai—Wu Tensor Theory

The Tsai—Wu theory [20] has a form similar to that of several other interactive
theories presented in Table 5.2. The most compact form for expressing this theory
is through tensor notation:

Fi0i+Fij0','O'j=1 i,j=1,2,...,6

where F; and F;; are strength tensors established through experimental procedures
and are related to failure strengths in principal lamina directions. For an orthotropic
lamina subjected to plane stress (03 = 113 = 723 = 0) this reduces to

F]lo’% + 2F 20107 + F220’% + F66U§ + 2F 16010¢ + 2F 26070¢
+ Fio1 + F03 + Feog = 1

The og term is the shear stress 713, as shown in Figure 5.6.

1} Oz

—t

=

Figure 5.6. Plane stress components for failure analysis using the Tsai— Wu tensor theory.
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It is possible to define five of the six parameters from simple test procedures.

For example, consider a load in the o;—¢; stress—strain plane as illustrated in
Figure 5.7.

Y]

‘} G2 1}

€4 €

—_ X

(i | vy

Figure 5.7. Uniaxial tension and compression tests to determine Fy, Fyy, F), and F,.

Assuming all other stress components are zero, the failure criterion reduces to
FuX*+ F;X =1 (for tension)
FuX?—F X' =1 (for compression)
Solving these equations simultaneously results in
1 1 1
Fi=—-—-—
b 0.

Fu= =%~

Following a similar procedure for the o,—g; stress—strain space as shown in
Figure 5.7 yields similar results for F; and F:

FynY 24+ F,Y =1 (for tension)

FnY? —F,Y' =1 (for compression)

Solving these two equations yields

Foy e 1 Fo 1 1

2%yy Ty v

Similarly, application of a pure shear stress results in
FesS? + FeS =1 (for+1)

FeeS? — F¢S' =1 (for—1)

Solving these equations yields expressions identical in form to those for Fyy, F,
F{, and F,. Since § = §, these terms are

1

F66=§§ F6=0
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In a similar manner, evaluation of the remaining first-order terms (F 60106 and
F60,06) yields Fig = F26 = 0. Because of this, the Tsai—Wu failure reduces to

F10% + 2F 30102 + F20% + Fes02 + F1o1 + Fa0p = 1 (5.7)

The only remaining term to be determined is Fj,. Wu [26] argued that this can be
accomplished by applying a biaxial state of stress so that o; = 0, = 0. In this
case the failure criterion becomes F10% + 2F26% + Fpno? + Fio+ Fyo = 1.
Collecting terms and rearranging, (Fy1 +2F 2 + F 2)02 + (F1 + F3)o = 1. This
expression can now be solved for Fy,, with

1 — (Fy + Fy)o — (F11 + Fp)o?
202

Fpp=

Thus, F; depends upon the various engineering strengths and the biaxial tensile
failure stress o. A biaxial tension test can be difficult to perform and cannot
generally be used to define Fi,. Originally, Tsai and Wu [20] suggested that a
45° off-axis tension or shear test would be good for determining F,. It was later
reported [27] that slight variations in the fiber orientation would completely obscure
the estimates of F ;. The off-axis test has been shown to produce poor results for
predicting F; [28, 29]. A theoretical test procedure by Evans and Zhang [30]
has been proposed for determining F ;. They suggest a series of tests in which
deformations in the directions transverse to the applied load are zero, as shown
schematically in Figure 5.8.

€2=’0

Op
HONONONONON s T

NOI¢ETEOEGM
b

Figure 5.8. Schematic of test procedure proposed by Evans and Zhang [30] for determi-
nation of F,.

The exact value of F|; cannot be explicitly determined, but there are bounds
imposed on it by geometric considerations [31]. F;2 can force the general form
of the failure criterion to change from an ellipse to a parallel set of lines to a
hyperbola, depending on its value. The interactive term is generally established
from experiments in which T = 0. With t = 0 the failure criterion can be put into
the form (Fy,01 + F1202 + F1)oy + (Fx03 + Fp00 + Fp)o; — 1 = 0. A general
second-degree expression of this type can define a quadratic surface. The type
of surface defined depends on the sign of the determinant formed by the stress
coefficients, called the discriminant [32]. The types of surface formed, as well as
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the discriminants, are
> 0 ellipse
Discriminant = F11Fy» — F %2 { = 0 parallel lines
< 0 hyperbola

The appropriate form of a solution for defining a failure envelope is a closed
surface, such as an ellipse. To determine Fi; a normalized interactive term is

introduced:
Fi2

* -_= —_—_—_—_—
2T JFuFn
The admissible range of values for F}, and its associated curve are
-1 < F{, <1 (ellipse)
Fi, =1 (parallel lines)
Fi, < —1,1 < F}, (hyperbola)

Using F13 = F1,4/F11F2, the failure criterion can be written as
F110} + 2F 3,/ F11F 20102 + F2203 + Fes0 + F101 + Fa0y = 1

This equation describes a family of ellipses. F}, governs the slenderness ratio and
the inclination of the major axis, which is +45° for —F}, and —45° for +F7,.
Assuming the orthotropic failure criterion described earlier is a generalization of
the Von Mises failure criterion, the interactive term is best defined as F}, = —1/2.

The parameters selected to define Fj; do not have to be those defined by Tsai and
Hahn [31]. Wu and Stachorski [33] found that for materials such as thermoplas-
tics and paper (which are less anisotropic than graphite/epoxy) good agreement
between theory and experiment is achieved for an interactive term expressed as

FyFyp

Fp=——F7—7-—
Fu+Fp

This term is not the only one applicable to slightly anisotropic materials such
as paper. A correlation of various strength theories with experimental results
for paperboard is presented in Schuling et al. [34]. Some theories showed good
correlations and some did not. In general, the form presented by Tsai and Hahn
{31] appears to be better suited to more highly anisotropic materials such as
graphite/epoxy than other representations.

Example 5.5. Consider a unidirectional lamina with failure strengths X =X’ =
217.7 ksi, ¥ = 5.8 ksi, Y’ = 35.7 ksi, and § = 9.86 ksi.

Fii = 1/XX’ =2.104 x 10~ (psi)~2
Fy=1/YY =4.833 x 107°(psi) 2
Fes = 1/5% = 1.029 x 10~ 8(psi)~2
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Fi=1/X-1/X'"=0
Fy=1/Y —1/Y = 1.44 x 10~*(psi)™!

Assuming F}, = —1/2, Fip = F},o/F11F2; = —1.594 x 10719, the failure crite-
rion becomes

o7 — 15.1560102 + 229.707 + 488.802 + 6,844,0000, = 4.752 x 10'°

The solution to this equation depends on the state of stress in the 1-2 plane.
Figure E5.5-1 shows the resulting failure surface for cases in which 7 = 0 and
T = 1000 psi. By varying one component of normal stress and solving the resulting
equation for the other, the complete curve is generated. For the case in which T = 0,
the ellipse crosses the axes at the four intercept points corresponding to X, X', Y,
and Y’. This is not the case when t # 0. As the shear stress increases, the failure
ellipse shrinks. The effect of F, on predicting failure can be seen by altering F},,
as shown in Figure E5.5-2. The variety of possible failure surfaces shown here
illustrates the importance of correct selection of F7}, for a particular material.

20,000 T o
0 e ¢ o .
ST e e
QOOA%.A-A' o A}
20,000 |- P qaa _ E .
= (] A A-"A' o (o]
£ 0000l Sop 2o s pansesd G 00
& , = 0 o o -A&-A 5 0 Q
60,000 |- -
O 1-0
-80,000 - A 1=10ksi =
-100,000 ! L '
~600,000 400,000  —200,000 0 200,000

o, (psi)

Figure E5.5-1. Failure ellipse for biaxial stress with v = 0 and © # 0.

Example 5.6. As a variation to establishing failure ellipses, consider the unidirec-
tional lamina in Figure E5.6. The failure strengths are the same as those previously
given, and the stresses are

o m*  n? 2mn oy m?
o, y=| n? m* —2mn 0Y=4¢ n? %o,
Ti2 —mn mn m?-—n? 0 —mn
Substituting these stresses into the Tsai—Wu failure criterion gives m*F ”af +

2m*n*F 1302 + n*Fyo? + m*n?Fes0? + n?F,0, = 1. Collecting terms:

(m*F; + 2m*n*F i+ n*Fy + m2n2F66)of +n%Fy0, =1
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Figure ES5.5-2. Effect of F), on failure ellipses.

ey ¥y
a, x o,

Figure E5.6. Unidirectional lamina subjected to a,.

For 8 = 45°, g, is found by solving the preceding equation:
0.25(Fy1 +2F 13+ Fy + Feg)o? + 0.5F 20, = 1
3,705 x 10 %02 + 7.2 x 10 %g, = |
ol +19.43 x 10°g, —2.699 x 10} =0

Solving this quadratic results in

o, = 9.73 ksi, —28.8 ksi

It is instructive to compare these results with the failure stress predicted from the
Tsai—Hill theory. For 8 = 45°, equation (5.5) becomes

I S A
0.25 F—E-FE'FE Oxsl

Substituting the appropriate failure strengths and solving results in a predicted
failure stress of o, = 9.99 ksi. This is within 7% of the o, predicated from the
Tsai—Wu theory.

The Tsai—Wu theory predicts two roots, one for a tensile stress and one for a
compressive stress. For compression the predicted failure stress (using X’ and Y’
instead of X and ¥Y) is o, = —19 ksi.
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The Tsai— Wu failure theory can also be expressed in terms of strain. The proce-
dure for transformation into the strain space is identical to that described for the
Tsai—Hill theory in the previous section.

5.5.2.1 Strength Ratios

In the design and analysis of components using composite materials, the failure
theory only answers the question of failure for a given state of stress. From a
design viewpoint it is equally important to identify the additional stress 10 which
a component may be subjected prior to failure. The general form of the Tsai—Wu
failure theory is

F”O% + 2F popoa + Fzzag + F(,ﬁag + Fioy+ Faop =1

It defines a go—no-go condition on failure for a specific state of stress. The left-
hand side can be either

< 1 (no failure)
Left-hand side { = 1 (criterion is met)
> | (not physically possible)

Tsai and Hahn [31] extended the use of a failure theory by defining an additional
variable, the strength ratio R, such that o;; = Ro;. The subscript 2 means allowable
or ultimate stress. The strength ratio R has features that make it a convenient
parameter to incorporate into a failure theory: (1) if the applied stress or strain is
zero, R = oo; (2) the stress/strain level is safe if R > 1; (3) the stress/strain level
is unsafe if R = 1; and (4) there is no physical significance if R < 1. An analogous
development can be made for strain [31].

The strength ratio can be used to define the allowable stress or strain (R = 1}, and
a factor of safety. If, for example, R = 2, the applied stress may be double before
failure.

For a specimen in uniaxial tension, the generalized criterion for failure involving
strength ratios can be expressed as

[F\y0f + 2F 20107 + Fo3 + FesolIR? + [Fro1 + F202]R = |

The solution of this equation involves two roots, R and R’, applicable to either the
tensile {R) or the compressive (R} failure strength,

Example 5.7. Consider the specimen in Example 5.6. The only nonzero applied
stress is assumed to be g, = 5 ksi. Failure strengths and strength coefficients (£,
etc.) with Fi, = —1/2 are

X=X =218 ksi ¥ =58 ksi Y =357 ksi S =9.86 ksi
Fi i =2.104 % 1o F»n =4833 % 10° Fia=—-1.598 x tp-1°
Fee=1.0285x 1078 F, =0 Fa = 1.440 x 1071
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The stresses in the principal material directions are defined by stress transforma-

tion as 2
oy m
o =4 n? ‘Yo,
Og —mn

Incorporating strength ratios into the conventional form of the Tsai—Wu failure
criterion results in

[Fyym® + 2Fom*n? + Foon®* + Fﬁﬁmznz]afRz +nFoR =1

The solution of this equation depends upon the angle #. For example, consider the
two possible angles of & = 0° and 90"

8=0" R =436, and 7,8 =0) = SR = 5(43.6) = 218 ksi
g = 90°: R =1.16, —7.121, which implies:
For tension: o, = 5(1.16) = 5.8 ksi

For compression: o, = 5(—7.12) = —35.7 ksi

These results are comparable to those described in Example 5.5. They indicate the
points on the 1-2 stress plane where the failure ellipse crosses an axis, which are
the failure strengths for this material in the | or 2 directions. Assume the fibers
are oriented at & = 45° (as in Example 5.6). For this case R = 1.874, —5.76, and
the allowables are

For tension: o, = 5(1.874) = 9.37 ksi
For compression: o, = 5(—5.76) = —28.8 ksi

These results are the same as those given in Example 5.6, and they illustrate the
use of strength ratios.

5.6 Buckling

Most of the efforts associated with buckling of composites have centered around
plates and shells. A review of the buckling of laminated composite plates and shells
is given by Leissa [35]. Buckling failures associated with lamina have not been
investigated to the same extent as those associated with laminates. A survey of fiber
microbuckling is presented by Shuart [36]. The problem encountered in buckling
is that it generally results from a geometric instability rather than a material failure
due to overstressing. A failure theory based on stress (or strain) is not applicable
for buckling analysis. Initial investigations of the fiber microbuckling problem
were formulated by Rosen [37] and are based on the procedures established by
Timoshenko [38] for columns on an elastic foundation. The procedures described
in Rosen [37] are also presented in Jones [39) and form the basis for one of the
discussions presented herein. The phenomenon of fiber buckling can be defined
as fiber instability followed by a decreased capability of the fibers to carry load,
with the final result being matrix failure by overstressing. The model from which
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an analysis procedure can be developed is shown in Figure 5.9. It is assumed that
the fibers are equally spaced and each is subjected to the same compressive load
P. It is further assumed that the fibers can be modeled as plates of thickness A
and an out-of-plane width of unity. The fibers are¢ separated by matrix plates of
thickness 2¢. There are two distinct modes of buckling in lamina analysis, and
the same model is used for each. The out-of-plane dimensions are disregarded,
making the model two-dimensional. In each mode, failure results from instability,
which in turn causes the matrix to fail. The manner in which the matrix deforms
motivates the failure modes termed extension and shear modes.

-

)

2¢

—— //L// a—
]
1
——wl S
=

w
e
it

Figure 5.9. Fiber-buckling model.

Extension Mode. In the extension mode, all fibers are assumed to buckle with
the same wavelength, but adjacent fibers are out of phase. The most prominent
deformation is extension of the matrix seen in Figure 5.10. An energy approach
is used to develop a solution for this mode of failure. The work and energy terms
required are

AU = change in strain energy of the fiber
AUy
AW,

i

change in strain energy of the matrix

change in work due to external loads

These energies are related by AW, = AU+ AU,

It is assumed that in its buckled state, the displacement of the fiber from its original
position ts expressed as

et nmx
Vi= E a, sin ——
L
n=1

The change in strain energy of the fiber is obtained by energy methods. Since the
fiber is assumed to be a fiat plate, the strain energy is written in terms of an elastic
modulus and an area moment of inertia as

1 L
Al = M)¥d
£ 2EfIf/u( Ydx
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original fiber
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Vi

matrix

. deformed fiber
extension

centerline

|
Figure 5.10. Model of deformed fiber centerlines used to define the extension mode of
fiber buckling.

where M = El¢(d?V/dx?). Substituting this expression for M and noting

d2 Vf nimt | mrx
Z @75 L
results in

2
Efff L dZVf Ef]fﬂ'q’ 3.2
AUf = T A (F dx = W E n aﬂ

The extensional strain and stress in the matrix (in the y-direction) are e = V¢/e
and o' = EnVy/c. In the x-direction the changes in strain energy are assumed
negligible for the matrix. The total change in strain energy for the matrix is

1 1 Enm 5 En\ (£ o, Eul 3
AUm=§/£’;‘o;“dA=5f(c—z) Vel dA:(T)/O (Ve) dx=¥zan
A A

The external work is found by considering the total compressed state of the fiber.
In the compressed state, it is assumed that the actual fiber length does not change.
The end of the fiber travels a distance § as shown in Figure 5.11. The work is
W, = Ps.

The displacement & is found by considering the length of the fiber, established from

L= ]| ds= dil+dyl = 1 + (dy/dx)dx
Jas= ]V /v

Expanding the radical in a binomial series results in
L—8 1 dy 2 1 L—8 dy 2
L= 1+ - — dr= (L -8+ = =) d
J [+2(dx)] eva-ory [(3) o

Solving for § yields
1 L—4§
5= - "2d
3 /D {(y)dx
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l P

Figure 5.11. Displacement of fiber centerline in applied load direction.

1
Since L» 4§, L—8— L, and &= ifuL(y’)zdx. where y' = dV/dx. The work

due to external forces is

/ dvf PR a2
We=7 dx =

Combining these energy expressions produces the general form of the buckling
equation. The value of P can be established from that expression as

Ef“” Srta) + 2505 sty

2 Z(rzzaﬁ)

The fibers are modeled as flat plates of unit width. The inertia term f; can be
replaced by /¢ = h*/12. If it is now assumed that P reaches the minimum critical
value required for a particular since wave, the mth wave, the preceding equaticn can
be put into a different form. The expression for the critical load can be expressed as

2p p3 4
neEsh 2 (24L Em) 1 }

PR = ———— — 5.8

R = {m T\ FwE; ) m G5
The critical buckling load is a function of material properties, length, and m.
The minimum wave number for buckling is determined from 8Pcr/dm =0,
subject to the condition 3°Pcr/dm® > 0. These operations result in m? =
V2AL3E  /n*ch’Er. For certain material combinations and geometries this

expression can yield unrealistically large values of m for the extension failure
mode. Using the preceding expression for m’, the critical buckling load is

2EEnh?
Peg =y — -7 (5.9)
3c

Equation (5.9) can be modified to reflect changes in volume fractions. The volume
fraction of fibers can be modeled as v = hA/(h + 2¢). This can be rearranged so
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that ¢ = (1 — vy)/2u¢. Using this expression for C, equation (5.9) becomes

Pog = | DHEEm 5.10
Cr = 30 — ) {5.10)

Associated with the critical buckling load is a critical stress for the lamina, which
is presented after the second mode of buckling is considered.

Shear Mode. In this mode the fibers are assumed to buckle with the same wave-
length and are considered to be in phase with each other. The matrix deformation is
predominantly shear as illustrated in Figure 5.12. The buckling load is determined
from energy methods. It is assumed that the matrix displacement in the y-direction
is independent of y. The shear strain in the matrix is expressed as

¥ = 0V /0x + 3w/ 3y.

777
t
7

e

2c
undeformed plate deformed shape of fibers

Figure 5.12. Model used to define shear mode of fiber buckling.

Since the transverse displacement is independent of y, 3V, /8x = 8V/3x. There-
fore, U n/8y = Unlc) — Un(—c)/2c, where Up(c} and Uy (—c) are defined in
terms of dVi/dx by Ug(e) = (h/2WdVs/dx) and Un(—c) = —(1/2)(dV¢/dx).
This results in 9l/,/dx = (h/2c)(dVi/dx). Using these expressions, the shear
strain and stress in the matrix are yp, = (1 + h{2c)dV¢/dx) and Ty = Gm¥yy-
The change in strain energy in the matrix is due to matrix shear and is

1 1 2
AUp = E,/,;tgy;nydA = 5/ACF,“(;VJ‘,},) dA

Using the expression for the transverse displacement of the fiber from the exten-
sional case, the shear strain is

(12 S () ()

The subsequent change in strain energy of the matrix is

PR E.L -
AUszmc(l+E) (i) Zann
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The changes in strain energy for the fiber (AUs) and the work due to external loads
(AW,) remain unchanged from the previous case. Following the same procedures
as before, the critical buckling load is

2 2
th hr Ef (m_h) (5.11)

U 12 L

The term L/m is called the buckle wavelength. The second term in this expression
is small when the buckle wavelength is large compared to the fiber width #. For
this reason, the second term is generally neglected and the critical buckling load

reduces to

h
Per = hGm (5.12)
Utm

The critical stresses for the extensional and shear modes of buckling can be approx-
imated from the critical buckling loads. Defining the stress as load divided by area,
and recognizing that the area in question is that of the fiber, which is approximated
as h, the critical stress is ocg = Pcr/h. For the extension and shear modes, the
critical buckling stress is

. vEfER
Extension: =2
xtension: ocg 1/ 30— o0

Gn
Vfm

Shear: ocr =

In order to assess which of these two modes is actually the most critical, both cases
are examined for typical values of elastic moduli. The fiber modulus is generally
greater than that of the matrix. Therefore, it is assumed that Ey = 20F;,. Since
vm = | — v, the critical stress for extension is

[ 20ucE2 Iy
Ocr = 2 S m =5.16E, o
3um Um

For the shear mode, the shear modulus of the matrix (assuming isotropic constituent
material behavior) can be expressed as

En

Gyp= ———
T T200 4 v

Assuming vy, = 0.35, the critical buckling stress for shear becomes

0.37E,
Ufm

OCcr =

From these expressions it appears as if the shear mode is the most probable mode of
buckling. For a glass/fepoxy lamina with Er = 10.6 » 10° psi, E, = 0.5 x 10° psi,
and G, = 0.185 x 10° psi, the critical buckling stresses for the extension and shear



Www.iran—-mav ad.com

172 Laminar Compesites.. - .00 5 Lo=iils o> o

modes are

Extension: ocp = 2.645 x 1061 / il
Um

0.185 x 10°
Urt'm

Shear: ocgp =

Plotting these two stresses as a function of v yields the resulis shown in
Figure 5.13.

~  12F T — T T -
2
= o -
£ —(Cr extension
& B -O- shear —
£ &k —
=
5 4
@ Y A7
.S 2 o
= -3 9 a9
3 0 | O ?I-EI—E K} 'il} (2 3] l

0.0 0.2 0.4 0.6 0.8 1.0

Vi

Figure 5.13. Critical buckling stress for extension and shear modes.

The shear mode is seen to be the most critical for a large range of fiber volume
fractions. At very low (and generally unrealistic} fiber volume fractions, the exten-
sion mode dominates. Although this illustration does not include experimental
results, the dominance of the shear mode as a failure mechanism has been exper-
imentally investigated and verified by Greszczuk {40]. From experimental and
theoretical studies of graphite fibers in various matrices he formulated the following
conclusions: (1) microbuckling in the shear mode dominates for low-modulus resin
systems; (2) transverse tension failures (including fiber “splitting™) result with
intermediate-modulus resins; and (3) the reinforcements fail in compression with
high-modulus resins.

An expanded form of the critical stress for the shear failure mode is obtained by
dividing the critical load in equation (5.11) by the fiber area A. Comparing this
form of ocgr to that predicted by the Euler buckling formula [40] results in the
following relationship between ogaier aNd Omicrobuckling:

w2

mamicmhuckling (5.13)

CEuler =

where w, L, and k are the specimen width, length, and fiber diamelter, respec-

tively, and
12G,

T v Er
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A more comprehensive discussion of the relationship between Euler buckling and
microbuckling is presented by Greszczuk [41]. In many cases Opgier > Cmicrobuckling-

The model presented herein assumes the fibers to be initially straight. Predictions
resulting from this model tend to be larger than experimental measurements, which
prompted Davis [42] to develop a model incorporating fiber geometry allowing
for initial fiber curvature. He investigated a boron/epoxy composite and evaluated
both delamination and shear instability. The conclusion drawn from his study was
that shear instability is critical.

An alternative viewpoint {43-48] is that compression failures may be the result of
fiber kinking, which can be linked to kink bands formed along existing glide planes
in the load direction. A mode of failure associated with fiber buckling and kinking
is shear crippling. Shear crippling appears as a shear failure on a plane at some
angle to the loading direction if viewed macroscopically. A microscopic investi-
gation reveals that shear crippling is frequently the result of kink-band formation
as schematically illustrated in Figure 5.14. The analysis of kink-related failures
generally requires a nonlinear material model and analysis techniques beyond the
scope of this text.

Figure 5.14. Schematic of kink-band geometry (after Hahn and Williams [{49]).

Experimental findings {49, 50] strongly suggest the origin of failures for uniaxial
specimens loaded in the fiber direction by compression is the free edge of the
lamina. Based on these observations, Wass et al. [51] developed a model for incor-
porating the free edge as the origin of a buckling failure. The model used is shown
in Figure 5.15. Analysis of this model consists of three parts, which require elas-
ticity formulations beyond the scope of this text. The logical progression from a
single fiber composite to an isolated single buckled fiber and its relationship to the
matrix material during buckling are easily understood. The combination of several
similar models (one of which is the free surface model in Figure 5.15) results in
a complete selution. Results from Wass et al. |51] are lower than those presented
by Rosen {37], and at high fiber volume fractions the results violate some of the
general beam theory assumptions used to establish the model.

5.7 Design Examples Incorporating Failure Analysis

As an example of design and failure analysis, consider the filament-wound, closed-
end pressure vessel in Figure 5.16. The winding angle @ is assumed to be positive
and is allowed to vary in the range 0° < ¢ < 90°.



Www.iran—-mav ad.com

174 Laminar Composites:|s. . _ooge 5 Lsmiils o>

LA NN\ NN n\
/EL

(a) {b) ()

Figure 5.15. Model of (a) single fiber composite, (b) isolated buckled fiber, and (c) matrix
configuration at buckling (after Wass et al. [51}).

Figure 5.16. Filament-wound pressure vessel.

The required lamina thickness as a function of winding angle, t = f(8), is to
be determined so that failure does not result. The pressure vessel is assumed to
be subjected to an internal pressure P. From classical thin-walled pressure vessel
theory, the longitudinal and circumferential stresses are the only ones present in
the x—y plane, and the state of stress for the vessel is shown in Figure 5.17, where
oy = Pd/4t, 0, = Pd/2t, and 1, = 0.

Gy a,

Figure 5.17. Siresses on filament-wound closed-end pressure vessel.

Assume the material may be either boron/epoxy or glass/epoxy. Both the Tsai—Hill
and Tsai—Wu failure theories are used for analysis. The internal operating pressure
is P = 100 psi. Introducing a constant @ = Pd /2 = 1500 psi-in, the stresses in the

1-2 plane are
oy aj2t (m?/2)+ n? 2
{ o } = [To]{ ajt } = {(n2/2)+m2} (—)
T2 0 mnj2 d

The failure strengths for each material are:

Material X (ksi) X' (ksi) Y (ksi) Y’ (ksi) S (ksi)

Boron/epoxy 185 363 8.8 44.7 15.2
Glass/epoxy 187 119 6.67 253 6.5
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Tsai-Hill Criterion.
2.2 2 2 2
o’lZ —oay oy T =X

Substituting the stress just given into this expression yields

2 2 2 2 2 2
() (5 o) (5o (5 )
2 R 2 a L
+e (2)](1) =X
This reduces to

m*art — 1) nt(rP+2) mPal@ri st — 1)) pa\?
[ i T a * 3 ](?) =X

Assuming only tensile stresses, and using boronfepoxy, the strength ratios are

X X
=2 2102 s=2 =122
=y Ty

Therefore, the failure criterion is
2
[442m% 4 11102 4+ 479m%n?) (‘:j) = (185 x 10°)?

Substituting a = Pd/2 and solving for ¢ yields

t =81 x 1073/442m* + 111n* + 479m2n?

For glass/fepoxy, assuming only tension, with strength ratios of » = 28.03 and
5 = 28.76, the failure theory becomes
2
[7852m® + 1972 + 991m?n?) (?) = (187 x 10°)?

Substituting & = Pd /2 and solving for ¢ results in

1 = 8.02 x 1073/785m* + 197n% + 991m2n?

Tsai—Wu Criterion.

F110] + 2F 120102 4 F0o? + Fesa? + F1oy + Faop = |

This criterion requires more coefficients. Substituting the preceding stresses into
this equation yields

o) o[ ()
era([5 o] 2) wra (1))
e ({3 8) e (5 o]) =
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This can be rearranged to

ay? F F
(?) {md (% +F12+F22) + n* (F11+F12+%)

5F F
+m2n2 (F” + Tu + Fy + ?‘6)}

O (Gom)er ()}

Collecting terms, the Tsai—Wu criterion is writien as

{ 4(F11+4F|2+4F22) 4(4F||+4F|2+F22)
m +n

4 4

4F 10F 4F F
+m2n2( i+ 124+ n+ 66)}“2

F 2F 2F F
+ {mz (-—1 -; 2) +n2 (—1;_ 2)}ar=t2

For boron/epoxy the strength coefficients with F}, = —1/2 are Fy; = 1.489 x
1071, Fpo=254x107% Fg=4328x10"° Fp=-972x10"", F, =
2.65 x 1075, and F2 = 9.13 x 1077, Using these, the failure equation becomes

{m*(2.44 % 107°) 4+ n?(5.526 x 107'%) + m?n?(3.39 x 107%)}d°
+ (m*(9.26 x 107%) + n24.83 x 107)} at = £

For glass/epoxy the coefficients are Fy = 4.494 x 107! Fy = 5.989 x 1077,
Feoe=2367Tx107% F,=-23594%x10% F;=-306x10"% and F;=
1.104 x10~*, and the failure equation becomes

(m*(5.74 x 107} + n*(1.275 x 1077y + m*n*(1.13 x 10°*))d
+ {m*(1.088 x 107%) + n?(5.214 x 107%)} ar = £

The variation of wall thickness with @ is shown in Figure 5.18. As seen, there is
little difference between the predicted wall thickness for either theory. The main
difference is in the material selection.

As a second example, consider the support bracket shown in Figure 5.19. It is
designed to safely sustain an applied load of 500 lb, directed as shown. The
material is carbonfepoxy (T300/5208) with properties defined in Table 4.2 (refer-
ence [42] in Chapter 4). The bracket is assumed to have an arbitrary fiber orien-
tation. The purpose of this analysis is to establish a design envelope for fiber
orientations as a function of applied load. Although the design load is 500 Ib,
it is initially assumed that the applied force has an unknown magnitude F. The
design envelope is to be established using both the Tsai—Wu and maximum strain
failure theories. Assame that from previously designed components of this type,
it is known that section AA in Figure 5.19 is the cntical section.
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Figure 5.18. Variation of wall thickness with @ in a filament-wound pressure vessel using
Tsai— Hill and Tsai—Wu failure theories.

Figure 5.19. Support bracket with arbitrary fiber orientations.

The initial step in the analysis is to define the state of stress at critical points
in cross-section AA, and subsequently the principal direction stresses and strains
for failure assessment. In order to establish the state of stress, we first define the
loads and moments acting on section AA. Considering the free body diagram in
Figure 5.20, we sce that the applied force vector at the free end of the bracket will
result in a force vector which must satisfy the condition of static equilibrium of
forces,

F
F=Fr+ —@Gi+5 —4k)=20
DF=Fr+=0i+y

In a similar manner the moment at section AA must satisfy the condition of equi-
librium of morments, given by

F
Ma=Mp+ (24i +48jx—3i +5f —4k) =0
Z A R 3 m /)

Solving these expressions for the vector components of Fgp and My results in the
cross-section loads and moments expressed in terms of the applied force F as
shown in Figure 5.20.
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Figure 5.20. FBD and internal loads and moments at section AA.

The transverse shear forces (in the x- and z-directions} are assumed to have
negligible effects upon the state of stress in section AA. For convenience the
two bending moments, being vector components, are combined to yield a single
moment oriented with respect to the x-axis. This resultant moment will produce
tensile and compressive stresses at two points (B and C) as shown in Figure 5.21.
From geometry, the cross-sectional area, second area moment of inertia, and polar
moment of inertia are A = 1.374 in?, I = 0.537 in%, and J = 1.074 in®.

The state of stress at points B and C is determined by combining the stress
components resulting from the individual loads and moments, as established from
elementary strength of materials considerations,

F, 0707 Mr  27.4F(1.0)
FEU T 1374 ™M= 0.537
Tr  13.6F(1.0)
_ I _ 20U aqF
Ty 1.074
27.4F
47
Z i

N

0.25° X

Z X o &

Figure 5.21. Resultant bending moment at section AA.

Combining the nommal stress components at points B and C and including the
shear stress results in the state of stress at both points, as shown in Figure 5.22.
The normal stress exists only in the y-direction. It is assumed that the x-axis has
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Figure 5.22. State of stress al points B and C.
been redefined to coincide with the line connecting points B and C and is indicated
as x'.

The state of stress in the principal material directions at either point is established
by stress transformation:

a m?  n*  2mn 0 mo, + 2mnt,,
oy v=| nt m  —2mn oy = nloy, — 2mnt,,
]2 —mn mn m?—n?l g, mnoy + (m* — nhiz,,

Incorporating these stresses into the Tsai—Wu theory, assuming F}, = —1/2, and
using the failure strengths in Table 4.2 resuits in

211 x 107 e)? - 1.595 x 1079 (o) + 4.83 x 107%(0,)2
+1.03 x 107312 + 1. 44 x 107*(oy) = |

An alternative form of this expression can be established by using explicit oy, o,
and z(; terms given earlier. The failure theory becomes

2.11 x 107" (m’a, + 2mn Ty, Y’ —1.595 x 107" (m’0, + 2mnr,,)(n’o, — 2mnt,,)
+4.83 x 1079(.&20, - 2Mrmr,‘y)2 + 1.03 x lﬂfg(mno). + (m? — .vzz)r”)2
+ 1.44 x 10_4(r12|:ry —2mny,) =1
Either form of the failure theory can be expressed in terms of the applied load
F, since oy and 1y, are functions of F. An explicit solution for F is established
by solving one of the foregoing relationships for a specific fiber orientation. The
results differ from point B to C, since one experiences a normal tensile stress, and
the other a normal compressive stress. The principal direction stresses as a function

of F and the actual failure load satisfying the preceding criterion for points B and
C are summarized in Table 5.3 for selected fiber orientations.

The principal direction strains and stresses are related by

€1 o]
()3
Yi2 T12
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Table 5.3. Summary of failure loads at points B and C.

Point B Point C

-] oy o2 L7 F () oy o3 12 F (th)

0 0 —505F i27F 633 0 51.5F 12.7F 11
15 29F  —3535F -1.6F 664 9.8F 41.7F 239F 128
30 —16F —4B9F —155F 618 239F 27.6F 30.3F 164
45 —126F =379F 253F 542 38.5F 13.1F 25.8F 259
60 —209F -—236F -282F 500 49 6F 1.9F 159F 564
75 ~40.7F —97F -236F 532 S44F —-29F 1.9F 4026
90 —50.5F 0 —-127F 764 51.5F 0 —12.7F 763

The stresses established from strength of materials approximations are related to
loads and geometry, while strains are associated with deformations. Incorporating
the material properties into the general expression just given results in the principal

direction strains:
£ 0.038 -0.011 0 gy
{ £9 }: [—0.011 0.689 0 } { 03}
¥z 0 0 0.962 T2

when £ is replaced with X, etc, this expression becomes

X 0.038 —-001n 0 o}
{ Y, } = [—0.011 0.689 0 ] { ar }
Sg 0 0 0.962 T2

Although X, and X, are identical, ¥, and Y, are not. Therefore, the preceding
expression must be examined according to the sign of ;. The sign of each strain
component is established from {£} = [§]{o]}. Each component of strain, expressed
in terms of the applied load F, is presented in Table 5.4 for various fiber orientation
angles. The units of each strain component are pin/in,

Table 5.4. Summary of strains at peints B and C.

Point B Point C
@ L3 £ ¥iz £ £ riz
Q0 0.535F —34.5F 12.2F —0.55F 35.5F 12.2F
15 0.679F ~36.9F -1.5F —0.07F 28.6F 23.0F
30 0.456F —33.7F —149F 0.62F 18.8F 29.1F
45 —-0.077F —25.9F —243F 1.32F B.6F 24.8F
60 —-0.772F —159F -27.1F 1.86F 0.78F 15.3F
15 —1.440F —6.3F =22 7F 2.09F —2.6F 1.8F
90 —1.920F 0.53F 12.2F 1.96F —{L55F —12.2F

The sign of #2 varies with fiber orientation. Taking this into account, the maximum
strain failure criterion for each sign of ¢ is

gx >0 gy <0

£1 8287 £ 8287
{ o } i, {3893} { o } ={23,960}
Yiz2 9481 iz Q481
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For £y < 0 the negative sign is omitted, with the understanding that these compo-
nents of strain are compressive. The load required to cause failure is established
by correlating the information for individoal strain components with the failure
strain for that case. Take, for example, point B with a fiber orientation of 30°. The
relationship between the normal strain (noting that £; < 0) and failure strain for
each component results in failure loads determined from

0.456F 8268
{ 33.7F } = {23.960}
149F 9481

Solving each of these results in three possible failure loads. The lowest one is the
obvious choice for this example. A summary of the failure load for each point,
based on each condition, is given in Table 5.5. In this table the load at which
failure initially results is underlined.

Table 5.5. Summary loads required to produce failure according to the maximum strain
theory failure.

3] &2 Yz

[} Point B Point C Point B Point C Point B Point C
0 15,500 15,070 694 110 177 777
15 12,200 118,400 649 136 6160 412
a0 18,200 13,400 711 207 640 326
45 107,700 6300 925 453 390 382
60 10,740 4500 1507 4991 350 620
75 5760 3970 3803 9215 420 SI1R0
90 4300 4200 7345 43,563 780 780

From this it is obvious that failure generally results from either a normal strain
in the 2-direction or the shear strain. A direct comparison of results predicted by
the maximum strain theory and the Tsai—Wu theory is presented in Figure 5.23.
It is apparent that point C is the critical point within the cross-section. For fiber
crientations less than approximately 60°, both theories predict failure loads below
the design load of 500 lb. The fiber orientations comresponding to a safe operating
condition are those for which the curves lie above the 500-lb threshold. Since
the maximum strain theory predicts failure loads less than 500 1b at point B for
40° < 8 < 8(F, the safest fiber orientation would be 8 > 80°. The assessment of
which failure theory is most acceptable will influence the final design choice.

In general, structura! members made from unidirectional composite materials are
initially analyzed in much the same manner as isctropic materials. The first step
requires an explicit identification of the forces and moments which exist on a plane
containing the points being assessed. Subsequently, the state of stress at each point
must be identified. Failure analysis can then be conducted using any (or all) of the
methods presented herein, or other suitable procedures.
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Figure 5.23. Failure envelope for support bracket established by Tsai—Wu and maximum
strain failure theories.

Table 5.6. Strength coefficients for Tsai— Hill theory.

Material 1/x? 14X’ 1/y? r’y 1s?
[Chapter 4
reference]
Carbon/Epoxy
T300/5208 [42) 201 %107 201 % 10717 297 x 1078 7.85x 1071 102 x 1078
(4.44 x 10719} (444 x 1071%) (6.25 % 10716y (1.65% 10 1"y  (2.16 x 10~'%)
[43] 1.0x 10710 8261071} 625x10°8 548 x 107 1.24 x 1078
(210 % 10 "8y (1.74 % 10778y (1.31 x 107'%) (1.07 % 107'¢)  (2.59 x 10~y
T300/934 (43) 873 x 1071t 907 x 107V — — 457 x 107
(1.84 x 107"8) (1,81 x 10 ¥ (9.6t x 10717y
T300/SP-286 290 x 1071 761 x 1072 129108  500x10°'0 433 x 10°%
143] (449 x 10 %) (7.80 % 10717 (3.43 %10 %) (225 % 10717y (193 x 107!6)
AS/3501 227 x 10710 227107 1718 x10°% 12 x107? 549 x 107°
(42, 43] @78 %10 ') (478 x 10719 (374 x 1071%) (236 x 100 7y (1.16 x 10716)
Glass/Epoxy
Scotchply: Type 242 x 1071 128 % 107'% 494 %1078 342 x10°? 9.07 x 1072
1002 [42] (887 % 107) (2,69 x 10 '%) (1.04 % 1071%) (7.18 x 10717y (1.93 x 10716)
Type 148> 1077 476 x 107" 260x107%  119x10°? 5.10 x 1072
SP-250-529 (312 %10 ) (100 x 107 %) (541 x 1071%) (25 x 107')  (1.06 x 10°19)
E-glass/epoxy 286 100Y 706 x10 ' 223x 10  156x 107 237x10 8
[43] (6.02x 107"%) (149 x 107'%) (475 % 107"%) (329%x 10 ') (498 x 10 '%)
S-plass/XP-251 120 x 107" 346 x 107" 826 x 10°%  1.19x10 ° 1.24 x 1078
[43] (252 % 1071 (728 x 10719 (1.73x 100 1) (250 x 1077} (2.60 x 107'6)
Boron/Epoxy
B(4)/5505 299x 1011 759%x10 17 126x 1078 1.17 x 1072 1.06 x 1078
[42] (6.30 x 10717y (160 x 107'%) (2.69 x 10716) (2450 x 10 ') (2.23x 10 '%)
{43] 290 % 1071 76l x 1077 1290% 1078 500x 107" 433 x 1070
(6.10 % 10 ') (160 % 100 ') (2.69 x 10 '%) (1.05x 107"7)  (9.07 x 10717}
Aramid/Epoxy
Kevlar 49/EP 242 x 10 "' 860 x 10710 330 x 1077 1.69 x 1078 4.11 x 1078
(42, 43] (5.10 % 10719 ¢(1.81 x 10°17) (694 x 10 15y {356 x 10 '5) (8.65 x 107'6)

Units are (pst) ? for English and (Pa)~2 for 51 {coefficients in parentheses).
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Table 5.7. Strength coefficients for Tsai- Wu theory. Slge Crpmdige 9 Oligztils @z e
Material [Chapter 4 reference] F F3 Fy Faz VFuFz Fes
Carbon/Epoxy
T300/5208 [42] 0 1.44 x 107 2.11 x 1071 4,83 x 1077 319 % 10710 1.02 x 10°R
() (2.09 x 1078 (4.44 x 10719 (1.02 x 10718y (6.72 x 10718} (2.16 x 10-19)
[43] 9,09 x 1077 178 x 107* 909 x 1071 1.80 x 10-8 1.28x 1079 1.24 x 10°F
(1.32 x 10719 (2.59 x 107%) (1.91 x 107!y (3.76 x 10718) (2.68 x 10717} (2.59 x 10716y
T300/934 [43] —1.78 x 1077 - B.90 x 10~10 — — 4.57 x 1079
(—2.62 x 10711y (1.87 x 1071Fy (9.61 x 10-17)
TI00/SP-286 263 % 1078 913 x 1075 1.49 x 10- 11 2.54 % 1079 1.94 x 10710 4.33x 1079
[43] (—1.70 x 10710y (1.38 x 1078 (6.31 x 1019 (8.78 x 10717y (7.44 x 10713 (1.93 x 10-19)
AS/3501 0 9,99 x 1079 227 x 1071 4.46 x 1077 3.18 x 1010 5.49 % 1077
[42, 43] )] (1.45 x 1078 (4.78 x 10719 (9.39 x 1017} (6.70 x 10718 (1.16 x 10716)
Glass/Epoxy
Scotchply: Type —4,81 x 10~9 1.64 x 10~° 7.33 % 107" 1.30 x 10°¢ 9,76 x 10710 9.07 x 107?
1002 (42] (—6.98 x 10~'% (2.38 x 1078 (1.54 = 101%) (2.73 x 10718y (2.05 x 10717y (1.93 x 10716)
Type SP-250-529 —-3.05 x 1079 1.27 x 10~* 2.65 x 10" 5.56 x 1077 3.84 x 10710 510 x 10°°
(—4.41 x 10717 (1.83 x 107 (5.59 x 10719y {1.16 x 10™!9) (8.06 x 10718 (1.06 x 10-16)
E-glass/epoxy —3.06 x 107¢ L.10 x 102 4,49 % 10~ 5.90 % 1077 515 x 10717 237x 108
[43) {(—4.42 x 10710 (1.61 x 10°Fy (9.45 x 10719 {1.25 x 10716) (1.09 x 10717 {4.98 x 10716)
5-glass/XP-251 —2.42 x 106 5.64 x 1073 2.04 x 107! 3.14 x 1077 253 x 1010 1.24 x 1078
[43) (—3.52 x 10740 (8.16 x 10°%) {4.28 x 10718} 6.58 x 10717y (5.31 x 107 1¥) (2.60 x 10~16)
Boron/Epoxy
B(4)/5505 271 % 10-% 7.82 % 107°% 1.51 x 107" 3.84 x 107° 2.40 x 1010 1.06 = 10-8
[42) (3.94 x 1071 (1.14 x 107%) {3.18 x 107!%) (8.12 x 10717y (5.08 » 107y {2.23 x 10716}
[43] 263 x 107° 9,13 % 107% 1.49 % 1071 2.54 % 1077 1.94 x 1010 433 x j0~*
(3.81 x 10710y {1.32 x 10°8) (3.13 x 10719 (5.32 x 10717y (4.08 x 1071y 9.07 x 10°17)
Aramid/Epoxy
Kevlar 4%/EP —2.44 x 1075 445 = 1074 1.44 % 10710 747 x 1078 3.28 x 10°° 411 x 1078
[42, 43] (-3.54 x 107%) (6.45 x 1078y (3.04 x 10718y (1.57 x 10715 (691 x 10747) {8.65 x 1076}

Units are (psi)“2 for English and (Pa)~? for SI (Coefficients in parenthases). +/F 1 Faz is presented for flexibility in selecting Fla.

SILOIN ], In[req U]

£81
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In performing an analysis involving interactive failure theories, the strength param-
eters are essential, For convenience the strength parameters for the Tsai—Hill and
Tsai~Wu failure theories are presented in Tables 5.6 and 5.7 for each of the mate-
rials in Table 4.2 and/or Table 4.3. In these tables the appropriate references from
Chapter 4 are cited. The English units are presented atong with the SI units (which
appear in parentheses).
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5.9 Problems

The material properties and failure strengths for all composite material systems in
the following problems are found in Tables 4.2 and 4.3.

5.1 An E-glass/epoxy laminate is subjected to the state of stress shown, Deter-

mine if failure will occur according to the maximum stress, maximum strain,
Tsai—Hill, and Tsai—Wu (with F}, = —1/2} theories, assuming a fiber orien-
tation of

(A) 30° (B) -3 (O)60»r
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5 ksi
15 ksi

5.2 Assume that stress ratios p and g are defined as p = o, /0, and ¢ = Tyy/0y.
A unidirectional laminate of arbitrary positive fiber orientation € is subjected
to the state of stress shown. Use the maximum stress criteria to determine
the angle ¢ at which failure would occur for each possible failure condi-
tion (X.Y.5).

} 10 ksi

4
¥

1

(DN

Iy pay

5.3 For each of the following states of stress, determine if failure will occur
using the Tsai—Hill criteria for an 5-glass/XP-251 lamina.

{A) 10 ksi {8) 4 15ksi © | 15 ksi
— ¥ 5ksi 10 ksi -t 20ks
¥ 60° F' ‘_I\y?<
x 20 ksi _3pe 5 ksi

‘_Tv \

5.4 Work Problem 5.3 using F}, = —1/2 in the Tsai-Wau failure criteria.

5.5 For each of the following, the fiber orientation & is arbitrary (—90° < 8 <
9(r). Plot the failure stress o, as a function of # using the Tsai—Wu failure
theory with ], = —1 and F}; = +1. What conclusions regarding the inter-
active termn can be drawn from this plot? Assume that the lamina is made
from Scotchply-1002.

(A) 20, (B) {C) oy
L . i
¥ ¥ b4
X o, X g, x 20,

! T
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5.6 Use the Tsai—Wu theory to plot the failure stress ¢ as a function of the
arbitrary fiber angle 8 (—90° < 8 < 90°). Assume the material is Kevlar
49/¢poxy, and F}, = ~1/2.

(A) 20 (B) “40 )
o ——— o
Y % y 1
X 4g X
P — cvmm—

-

J

5.7 Determine the stress required to produce failure using the Tsai—Wu (with
12 = —1/2), Cowin, and Hoffman failure theories (see Table 5.2). Assume
the material has properties from reference {42] in Chapter 4.

(A) T300/5208, 8 = 30° (B) Boronfepoxy, 8 = 60°

A 20

5.8 A filament-wound composite pressure vessel is to be made from unidirec-
tional A8/3501 graphite/epoxy. The winding angle is 0° < & < 90°. The pres-
sure vessel has closed ends and an intemnal pressure P. In addition, a torque
T is applied as indicated. The torque will result in a shear stress expressed
as T = 2a/t, where a = pd /2 = 1500 psi-in. The diameter d = 30 in. Plot
the required lamina thickness as a function of angle # to ensure a safe design
using
(A) Maximum stress theory (B) Tsai—Hill theory

5.9 Assume the closed-end pressure vessel of Probiem 5.8 is also subjected to
an applied bending moment as shown. The bending stress is known to be
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o = S5a/6t, where a = 1500 psi-in. Determine the variation of thickness
with fiber orientation #. Do not forget to take into account that the bending
stress is either tensile or compressive, depending upon which circumferential
position is being evaluated. Assess the failure using

(A) Tsai—Hill theory (B) Tsai—Wu theory (F];, = —1/2)

A unidirectional lamina with an arbitrary positive fiber orientation € is placed
between two rigid walls in its stress-free state. As the temperature is changed,
the walls remain the same distance apart. The rollers will never lose contact
with the walls. Determine and plot the temperature change AT required to
produce failure as a function of the fiber angle # using the material and
failure theory given.

{A) T300/5208 (Chapter 4, reference [21]), Tsai—Hill
(B) E-glass/epoxy (Chapter 4, reference (43]), Tsai-Wu with F}, = —1/2
N |

=

A support structure made of a unidirectional composite is subjected to the
load shown. The fiber orientation is 8 = 60° from the venical y-axis. Use
Tsai— Wu failure theory with F}, = —1/2 to determine the maximurmn applied
load which the structure can support based on an analysis of a plane through
section A—A. Use elementary strength of materials approximations to define
the states on plane A—A prior to performing the failure analysis. Neglect
transverse shear, and assume the material is

{A) T300/5208 (Chapter 4, reference [42])

{B) E-glass/fepoxy (Chapter 4, reference [43])

-.———Qﬂ—b-/
.

B 2 i

3t

I»
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5.12 The support structure of Problem 5.11 is subjected to the applied load shown.
The fiber orientation angle & is allowed to be arbitrary, but limited to positive
angles. Determine the appropriate angle & to assure that failure will not occur
by plotting & vs the failure load F using the Tsai—Hill failure theory. On this
plot, indicate the safe and unsafe regions assuming a load of F = 500 1b. The
inaterial is the same as in Problem 5.11. Neglect transverse shear effects.
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LAMINATE ANALYSIS

6.1 Introduction

A laminate is a collection of lamina arranged in a specified manner. Adjacent
lamina may be of the same or different materials and their fiber orientations with
respect to a reference axis (by convention, the x-axis) may be arbitrary. The
principles developed in previous chapters are used to establish load -strain and
stress—strain relations for continuous fiber laminated composite plates. Discus-
sions are restricted to laminate stress analysis. The procedures established in this
chapter for thin plates can be extended to other structural elements such as beams,
columns, and shells, which are beyond the scope of this text.

6.2 Classical Lamination Theory

Classical lamination theory (CLT) as presented herein is applicable to orthotropic
continuous fiber laminated composites only. Derivations in this section follow
the classical procedures cited in earlier publications [1-5]. The approach used in
formulating CLT is simnilar to that used in developing load —stress relationships in
elementary strength of materials courses. An initial displacement field consistent
with applied loads is assumed. Through the strain-displacement fields and an
appropriate constitutive relationship, a state of stress is defined. By satisfying the
conditions of static equilibrium, a load—strain relation is defined, and subsequently
a state of stress is defined for each lamina.

6.2.1 Strain-Displacement Relations

Consider the plate shown in Figure 6.1a, in which the xy-plane coincides with the
mid-plane of the plate. With application of a lateral load, reference point A located
at a position defined by the coordinates (xa, va) is displaced. The displacement
W of this point, as well as an assumed deformed shape of the plate in the x—z
plane, are shown in Figure 6.1b. The displacements of any point within the plate
in the x, y, and z directions are denoted by U, V, and W, respectively. The

191



Www.iran—-mav ad.com

192 Laminar Composiess|oo oo o o\Lomiils s> 1

z |

(@)

Figure 6.1. Plate geometry for classical lamination theory.

manner in which these displacements are modeled dictates the complexity of the
strain—displacement and eventually the load—strain relation. The displacements
are initially expressed by a power series in z, which takes the form

o0 o X0
U= 7oy V=) 7%xy W=> 0y 6.1)
i=0 =0 i=0

The number of terms retained, as well as assumptions made regarding permissible
strain fields define the form of &, ¥, and ®. The U, V, and W expressions
in equation (6.1} represent displacements resulting from both forces (normal and
shear) and moments (bending and torsional). For thin plates subjected to small
deformations, the fundamental assumptions are as follows:

1. Deflections of the mid-surface (geometric center of the plate) are small
compared to the thickness of the plate, and the slope of the deflected plate
is small.

2. The mid-plane is unstrained when the plate is subjected to pure bending.

3. Plane sections initially normal to the mid-plane remain normal to the mid-
plane after bending. Shear strains y,, and y, are assumed to be negligible
(Vy: = ¥ = 0). Similarly, normal out-of-plane strains are assumed to be zero
when plate deflections are due to bending.

4. The condition of a, = 0 is assumed to be valid, except in localized areas where
high concentrations of transverse load are applied.

These assumptions are known as the Kirchhoff hypothesis for plates and the Kirch-
hoff—Love hypothesis for thin plates and shells. Different structural members such
as beams, bars, and rods require alternate assumptions. For the case of thick plates
(or short, deep beams), shear stresses are important and assumptions 3 and 4 are
no longer valid, requiring a more general theory.

For thin laminated plates the total laminate thickness 4 is usually small compared
to other plate dimensions. A good approximation is achieved by retaining only
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the first few terms of U/ and V from equation (6.1). The W displacement field is
assumed to be constant, resulting in

U=Uolx, D +z®x, y) V=Volx,)+Wx y) W=Wyxy)

The terms Ug, Vo, and Wy are the mid-surface displacements. They are not the
same as the neutral bending axis displacements presented in strength of materials
discussions for beams made of isotropic materials. The displacements of the plate
with respect to the mid-surface are illustrated in Figure 6.1b for the x-direction.
Similar relations can be established for the y-direction. Using the definitions of
strain from Chapter 2, and the assurnptions just given, the strains are

U _ aUg | dd

£y = a Y +Z¥
£y = QE = % + zE
Y 3y ox dy
oW
& = s =0
sz=?—U+ﬁ=(%+¢) =0
a9z b x
av  aw aW,
sz=a+§= (W_i_q‘) =0
U av ally  dVy aP o
”"’=5+a_x=(a_y+a_x)“(5+§)
The nonzero mid-surface strains are defined as
£ o/ dx
{}=¢ ¢ 3= { av,/dy } (6.2)
},f allg/oy + dVo/ox

¥

The mid-surface may experience curvatures related to the radius of curvature of
the mid-surface. The curvatures are related to the displacement functions W and

Db
Y Ky ad/ox
{ Ky } = { a/ax } (6.3)
Kxy o /dx + oW/ ox

Each term in equation (6.3} can be related to a radius of curvature of the plate. Each
curvature and its associated relationship to ¥ and @ is illostrated in Figure 6.2.

The strain variation through a laminate is expressed by a combination of equa-

tions (6.2) and (6.3) as
Ex 82 Ky
{ &y } =< £ +z{ Ky } (6.4)
Yry 0 Kry
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Figure 6.2. Plate curvatures for classical lamination theory.

The strains in equation (6.4) are valid for conditions of plane stress (y,, = ¥, =
o, = (). In cases where the condition on the two shear strains being zero is relaxed,
the strain relationship given by equation (6.4) contains additional terms (), and
V). which are not functions of the curvatures «,, x, and «;,.

With y,; and y,, zero, ¥ and ¥ can be explicitly defined in terms of Wy from the
strain—displacement relations as
_ W, Wy

b= W= (6.3)
ax ay

It follows directly from equation (6.3) that the curvatures are

K —8?Wo/ix?
{ Ky } = { —8Wy/0y* } (6.6)
Kxy —29°W,/0xdy

Using these definitions of curvature and equation (6.2), the strain variation through
the laminate as represented by equation (6.4) can be expressed in terms of displace-
ments. This form of the strain variation is convenient for problems in which
deflections are required. Examples of such problems are generally found with
beams, plate and shell vibrations, etc., where @ and W are obtained from boundary
and initial conditions. They are not considered herein.

6.2.2 Stress-Strain Relationships

The strain variation through a laminate is a function of both mid-surface strain
and curvature and is continuous through the plate thickness. The stress need not
be continuous through the plate. Censider the plane stress relationship between
Cartesian stresses and strains,

o, (&
(2)-o(2)
Txy Yy
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Each lamina through the thickness may have a different fiber orientation and
consequently a different []. The stress variation through the laminate thickness is
therefore discontinuous. This is illustrated by considering a simple one-dimensional
model. Assume a laminate is subjected to a uniform strain e, (with all other
strains assumed to be zero), The stress in the x-direction is related to the strain by
©O/,- This component of [(] is not constant through the laminate thickness. The
magnitude of Q,, is related to the fiber orientation of each lamina in the laminate.
As illustrated in Figure 6.3, the linear variation of strain combined with variations
of @,, (which can be treated as a directional modulus designated as E,) gives rise
to a discontinuous variation of stress, described by o, = E &,.

611 (Ey) Oy = Bty
8, ——— - r___
0,
i —;
2 7 [

Figure 6.3. Stress variation in a varieble-modulus material.

In order to establish the state of stress at a point in a laminate, the state of
strain at the point must first be defined. Combining this state of strain with an
appropriate constitutive relation yields the stress. For general loading conditions
it is convenient to work with Cartesian components of stress and strain. For a
specific lamina (termed the “kth” lamina) the appropriate constitutive relationship
is [@lx. Under conditions of plane stress the Cartesian components of stress in the

kth layer are
a, _ £ P
{ oy } = [Q, £ + z{ Ky } ©.7
txy k K):y

¥
This relationship is assumed valid for any layer of the laminate.

e D D

=]

¥

6.2.3 Laminate Load-Strain and Moment-Curvature Relations

Formulating a simple working relationship between load, strain, and stress requires
appropriate load —displacement relationships for the entire laminate. The admissible
loads are assumed to be a set of resultans forces and moments, defined for a
representative section of the laminate. The resultant forces have units of force per
unit length of laminate (N/m or lb/in) and are shown in Figure 6.4. Thin-plate
theory omits the effect of shear strains y,, and y,,, but shear forces Q, and Q, are
considered. They have the same order of magnitude as surface loads and moments,
and are used in developing the equations of equilibrium [6]. The dimensions for
these terms are force per unit length of laminate.
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Figure 6.4. Positive sign convention for laminate loads.

To satisfy conditions of equilibrium, resultant laminate forces must be balanced by
the integral of stresses over the laminate thickness. The balance of forces (assuming
g, = 0 is

N, 0;
N, w2 | @y
ny = -/ Txy dZ (68)
O« ~h2 | Ty
Qy r)‘l

The resultant moments assumed to act on the laminate have units of length times
force per unit length of laminate (V-m/m or in-lbfin) and are shown in Figure 6.5.
In a manner similar to that for resultant forces, the resultant moments acting on
the laminate must satisfy the conditions of equilibrium. The out-of-plane shear
stresses T,, and Ty, do not contribute to these moments. Moments are related
to forces through a simple relationship of force times distance. The balance of
resultant moments yields

M, k2 0y
My}=/ z{oy}dz {6.9)
Mxy —h/? txy

Figure 6.5. Positive sign convention for laminate moments.
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A general laminate consists of an arbitrary number of layers (V). The Cartesian
stress components within any one of these layers, say the kth layer, are defined by
equation (6.7). The fiber orientation of each lamina is arbitrary, so the variation
of stress through the laminate thickness cannot be expressed by a simple function.
Each of the N layers is assigned a reference number and a set of z-coordinates to
identify it, as illustrated in Figure 6.6. The location of each layer is imporiant in
defining the governing relations for laminate response. Using the topmost lamina
(labeled N in Figure 6.5) as the first lamina is contrary to classical lamination
theory procedures and affects numerical results.

= !
\ —
h/2 k Yoo
mid-surface Zie-t _ik
25 :
hZ 1 > * Zp
{ 1 '

Figure 6.6. Laminate stacking sequence nomenclature.

Equations (6.8) and (6.9) can be expressed in terms of the stresses in each layer.
Since the kth layer is assumed to occupy the region between z; and g, it follows
directty that equations (6.8) and (6.9) can be expressed as

Ny N oy Oy
{N,}:Zf {a,} dz (6.10)
N_‘}. k=1 Y% 1 T_U- k
N
Q*}— /a{t“}d 6.11
{Q)- Z aa Ul i ‘ ©10

k=1
M, N 2 T
{M,}:Z/ z{a}.} dz (6.12)
My, k=180 Ly, )y
where N is the total number of lamina in the laminate. The O, and 0, have been
segregated from the other load terms, for reasons to be subsequently discussed.

Substituting equation {6.7) into the preceding equations, the laminate loads and
moments are expressed in terms of the mid-surface strains and curvatures as

NX N _ Tk 82 x Ky
{ Ny } =5 10k f &9 dz-l—/ z{ Ky }dz (6.13)
Ny k=1 =l 0 el

Koen
yxy xy
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M; N % & & Ky
{ M, } =Y [0k f z4 dz+/ Z { Ky }dz (6.14)
Mxy k=1 Zi -l }"0 -1 Ky
xy

Since the mid-surface strains {€”} and curvatures {«} are independent of the z coor-
dinate, the integration is simplified. The integrals in equations (6.13) and (6.14)
become simple integrals of (1, z, z%). The loads and moments can be expressed in
matrix form, after integration, as

- 2 0
(N ) An Ap A | Bu B By €x
Ny A An Ax | Bz Bxn By &9
Ny A Aw Aes | Bis Bx  Bes ¥
- } = e ¢ .7 (6.15)
M, By B Bis | Du D Dy P
M, Bz By By | Dz Dn Dy Ky
\ M,y ) Bis Bx Bes | D D Des] | « )
Each component of the [A], [B], and [D] matrices is defined by
N ——
(Al = [0l (2 — 2-1)
k=1
L
81 = 5 2 10k (& — %) (6.16)
k=1

1o
iD;;] = 3 Z[Q;j]i (Zf - zJ::—l)
k=1

The subscripts i and j are matrix notation, not tensor notation. The form of equation
(6.15) is often simplified to

BREHE e

When using this abbreviated form of the laminate load-strain relationship, one
must be aware that {N), {M}, {e°}, and {«} are off-axis quantities. They define
laminate behavior with respect to the Cartesian (x—y) coordinate system. Each
of the 3 x 3 matrices in either equation (6.15) or (6.17) has a distinct function
identified by examination of equation {6.17). These matrices are termed:

[A;;] = extensional stiffness matrix
[B;;] = extension—bending coupling matrix
[D;i;] = bending stiffness matrix

The resultant shear forces Q. and @, are treated differently since they are not
expressed in terms of mid-surface strains and curvatures. From equation (3.7) we
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see that the stress—strain relationship for shear in the kth layer is expressed as

Tz — QSS 245] {sz} 6 18
{Tyz}k [Q45 Quale LV ) ©18)

From equation (6.8) the expressions for (0, and @, can be written as

N ﬁ —
Qx}: ® |:9_55 245] {Vxl} d 6.19
{Qy kzz‘:/a_. Qus Qaale L V2 )y ‘ 19

It is generally assumed that the transverse shear stresses are parabolically distributed
over the laminate thickness. This distribution is consistent with Reisner [7] and can
be represented by a weighting function f(z) =c [l — (ZZ/h)z]. The coefficient ¢
is commonly termed the shear correction factor. The numerical value of ¢ depends
upon the cross-sectional shape of the laminate. For a rectangular section, generally
of interest in laminate analysis, ¢ = 6/5 (1.20). The derivation of this can be found
in many strength of materials texts. The expression for @, and O, can be written
in a manner analogous to equations (6.15) or (6.17):

O _ Ass  Aas Vxz
{ Oy } Bl [A-ﬁ A‘“]k { Yr }k (©20)

Following the same procedures as before, it can be shown that

Al 4
Ay =cy (0L {(zk — %0~ 35

k=1

(z - zf_.)} (6.21)

where f,j = 4,5 and h is the total laminate thickness.

In general, the shear terms are seldom used in beginning laminate analysis. They
are, however, useful in the formulation of plate analysis, as well as beam deflection
problems. The stiffness terms (644, §55, etc.) associated with @, and @, can be
difficult to experimentally determine; therefore, they are often approximated.

6.2.3.1 Alternate Formulation of A, B, D

A convenient form for the [A], [B]. and [[}] matrices can be established by exam-
ining the position of the kth lamina in Figure 6.7. Recall that each ply of the
laminate is confined to the limits z; and z;_,. Using these bounds, the following

t
W77 e R

r ERPEE
\ Zy L
_ __midsuace ) 7' | |

Figure 6.7. Relationship of T, and &, to 7; and 7; _,.
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definitions result:

tr = 7z — zi_1 = thickness of the kth lamina

Zk + - . .
Iy = —k-—zru = location of the centroid of the kth lamina from the
mid-plane of the laminate. Note that z; can be

either positive or negative.

From equation (6.16), the terms containing z; and z;_, can be written as

G =% _ @ —wme )@t uo) nz
2 - 2 = fkik
3_ .3 3
| 2, ki
= A= pL
3 AT
Substitution of these into equation (6.16) results in
N
(A1 =D [0l
k=1
N p—
(8] = > [Q,litiZ (6.22)
k=1

N 3
1D =Y 10,k (:kzi + %)

k=1

For transverse shear the analogous expression is

N 3
3] 4 (2. %
[Ayl= C;:l[Qij]ktk {1 + 3 (zk + E)} (6.23)
where ¢ is the shear correction factor previously defined.

The [A], [B], and [D] matrices defined by equation (6.16) or (6.22) are the primary
relations between load and strain for laminate analysis. These can be manipulated
to define mid-surface strains and curvatures as a function of applied loads. It is
obvicus from examination of either equation used to define each component of
[A], [B], and [D] that they are functions of both lamina material and the location
of each lamina with respect to the mid-surface. Consider, for example, a four-layer
laminate consisting of only 0° and 9° plies, which can be arranged in one of two
manners, as shown in Figure 6.8. All plies are assumed to have the same thickness
(t¢), and the entire laminate has a thickness of 4¢,. The [A] matrix is a function of
[Q], and ply thickness for each lamina is not influenced by position, since # is a
constant.
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(a) b}

Figure 6.8. Two possible laminate stacking arrangements resulting in identical [A]
matrices.

The [D] matrix is influenced by #;, Zx, and {Q] for each lamina. Considering only
D\, equation (6.22} for this term is

4 3
Dul =S [Buk (rkzi + ]‘—"2)

k=1
Dy, for the laminate of Figure 6.8a and b is

[0/90], {90/0],
3 3
[Dnl = %{23@11]0 + 1211 )0} [Dn] = %{23[(_211190 + (01 lo}

Since [Q),]0 > [@,1]99, the laminate in Figure 6.8a has a larger Dy, than that of
Figure 6.8b. The [B) matrix for both laminates in Figure 6.8 is zero.

6.3 Thermal and Hygral Effects

Thermal and hygral effects are dilatational (associated with dimension changes
only) and influence only the strains. In this section thermal effects are discussed
and equations relating resultant thermal loads and moments to the load-strain
relationship of equation (6.17) are derived. Hygral effects are expressed in a similar
manner. The combined effects of temperature and moisture are incorporated into
a general governing equation for plane stress analysis.

6.3.1 Thermal Effects

For some laminate stacking arrangements thermal effects can result in large residual
strains and curvatures. In order to illustrate residual (sometimes called curing}
strains due to thermal effects, a cross-ply laminate (only 0° and 90° lamina)
is considered. A one-dimensional model is used, and only the strains in the x-
direction are considered. The coefficients of thermal expansion in the x-direction
are different in each lamina. Figure 6.9 illustrates the deformations and residual
strains developed in one direction for a cross-ply laminate.

Laminates fabricated by curing a stack of lamina at elevated temperatures are
considered to be in a stress-free state during curing. In the initial stress-free state



www.iran-m ’dVZlLl .com

202 Laminar Composites Slss g 5 Olsdils gz o

Initial stress
free state
(temperature = Tp)

Unconsirained IR
final state |

(temperature =T) |

)= ay (T-Tp)

Actual
final state
(temperature = T)

Figure 6.9. Residual stresses in one direction of a symmetric laminate.

(at temperature To) all lamina are the same length. After the cure cycle is complete
the laminate temperature returns to room temperature. If the lamina are uncon-
strained, they can assurne the relative dimensions indicated in the middle sketch
of Figure 6.9, resulting in the strains shown. Each ply is constrained to deform
with adjacent plies resulting in a uniform residual strain, but different residual
stresses in each lamina, as indicated in Figure 6.9. These stresses can be thought
of as the stresses required to either pull or push each lamina into a position consis-
tent with a continuous deformation (strain). The residual stresses (and strains) can
be either tensile or compressive and depend on temperature difference, material,
stacking sequence, etc. If the symmetric cross-ply laminate of Figure 6.9 were anti-
symmetric (consisting of two lamina, oriented at 0° and 90°), the residual strains
would be accompanied by residual curvatures.

The general form of the stress in the kth layer of the laminate given by equa-
tion {6.7) must be appended to account for temperature affects. Following the
discussions of Section 3.3.1, the stress components in the kth lamina are

Ty _ 82 Ky oy
oy 0 =[O & Y423 &k, 32 @, » AT (6.24)
Toy Tk }/Ey Kxy Uxy 7k

The a AT terms have the effect of creating thermal loads and moments, which must
satisfy the conditions of equilibrium. The thermal stresses in the kth lamina are

T

01 . HI
{ay} =[Q]k{ay}AT
rxy k axy



Www.iran—-mav ad.com

o

Sloe Cyewdige 5 Hbsziils x> Laminate Analysis 203
In a manner identical to that of Section 6.2.3, the thermal loads and moments are

NT T
X k2 [ Ox hi2 oy
(NT} =< N =[ {a}.} dz=/ [Q]k{ay} ATdz
—hy2 . —h/2 .

rxy oy

N Oy
= Z[a}k{ oy } AT (6?.5)
k

k=1 Oy
M] k2 oY ¥ R2 oy
[MT}: M}: =/ z4 0y dz=f Oz ay ATdz
i | e Lo L e e
N o
=3[0k { oy } AT (1) (6.26)
k=1 Gy ) g

Formulation of {NT} and {M ") is analogous to formulating the {A] and [B] matrices.
Provided AT is independent of z, {NT} and {MT) are related to integrals of
(1, 2} dz, respectively. Thermal loads and moments are formed in a manner anal-
ogous to the formulation of [A] and [B]. As a result, a symmetric laminate with a
uniform temperature results in {M7} = 0. Incorporating thermal loads and moments
into equation (6.17) results in

N A | B &0 NT
{}_—_[ ...... ] I S S (6.27)
M B | D P M7

6.3.2 Hygral Effects

Hygral effects are similar to thermal effects in that moisture absorption introduces
dilational strains into the analysis. Discussions of hygral effects paralle] those of
thermal effects. Hygral strains produce swelling, and the siresses due to these
strains, when coupled with mid-surface strains and curvatures, are expressed as

Oy . € Kx By
{ Gy } = [Ql £ +Z{ Ky } -~ { ﬁy } M (6.28)
Txy 7 Kyy .Bxy k

In equation (6.28) M is the average moisture content, as discussed in
Section 3.3.2.1. These equations are more complex if moisture gradients are
considered, since the varation of moisture concentration through the laminate
is a function of z. Moisture can produce both hygral loads and moments. These
are found by considering equilibrium conditions. The hygral stresses in the kth

lamina are H
Ux _ ﬁx .
{Oy} :[Q]k{ﬁy}M
Txy 1 k ﬁxy

RO

=

¥
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The hygral loads and moments are

N mr (o " mr (B Y
{NH} — Nl;l = / ay } dZ =/ [Q]k { ﬂ_‘n’ } MdZ
—h/2 Tey J & —hj2 ﬁxy k

NY
LA B:1
= Z[Qh{ By } M (6.29)
k=t ﬁxy k
M;}:{ k2 Ty H hf2 )Bx o
MP) = MY =/ {Uy} dz:/ [Q]kz{ﬁy}Mdz
MY g, Jy e By /s
N B« i
3" { By } Mtz (6.30)
k=1 ﬁxy k

6.3.3 Combined Effects

The combined effects of thermal and hygral considerations on a laminate are
expressible in compacted form as

DL -

where {NT), {MT), (MY}, and {M") are defined by equations (6.25), (6.26), (6.29)
and (6.30), respectively, and [A], [B], and [D] are given by equation (6.16) or
(6.22). Mid-surface strains and curvatures are defined by equations (6.2) and (6.3).
Equation (6.31) can be casi into a more compact form by defining

(N} = (N} + (NT) + (N} (M) = (M) + (M7} + (MY) (6.32)

&0
{ - - } {6.33)
K

Two distinct cases are associated with equation (6.33):

Using (6.32), equation (6.31) is expressed as

Case 1: [B] =0 is the simplest case since normal strains and curvatures are
uncoupled. Two equations, {N} = [A]{¢°} and {M] = [D]{«x), must be
solved.

Case 2: [B] # 0 is more complicated since the strains and curvatures are coupled,
and equation {6.33) must be solved.
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6.4 Laminate Codes

A code is generally used to identify the lamina stacking sequence in a laminate.
Knowing the code can aid in identifying the form of [A], [8], and [D] prier to
analysis, which can simplify the procedure.

6.4.1 Single-Layered Laminates

A single-layered laminate is a unidirectional lamina with multiple layers. If the
total thickness of the laminate is z, the [A], [B], and [P] malrices are

[Aijl =0t [Bi1=0 [Dy]=0,/12

These forms of each matrix can be verified by examining equation (6.16) or (6.22).
Since [B] = 0, bending and extension are uncoupled, allowing simplified solution
procedures. The mid-surface strains and curvatures are obtained by solving

N [A|0

M K
For fiber orientations of 0° and 90°, Qs = Oy = 0. This results in A = Az =
Dyg = Dy = 0. If the fiber orientation is anything other than 0° or 90°, both [A]
and [D] are fully populated.

6.4.2 Symmetric Laminates

A symmetric laminate has both geometric and material symmetry with respect to
the mid-surface. Geometric symmetry results from having identical lamina orien-
tations above and below the mid-surface. Material symmetry can result from either
having all lamina the same material, or requiring different lamina to be symmet-
rically disposed about the mid-surface. A result of symmetry is [B] = 0. In order
to have a symmetric laminate, there may be either an even or an odd number
of layers. Examples of symmetric laminate stacking sequences and notation are
shown in Figure 6.10. Similarly, their notations can be used for describing lami-
nates composed of different materials and/or ply orientations.

6.4.3 Antisymmetric Laminates

This laminate is characterized by having its layers arranged in an antisymmetric
fashion with respect to the mid-surface. There must be an even number of plies
for a laminate to be antisymmetric. The [B] matrix is not zero. An example of
an antisymmetric laminate (fiber orientation, ply number, and laminate code) is
given in Figure 6.11. This laminate has several notable features. First, each 48 is
accompanied by a —¢. There is a distinct relationship between components of Q]
for +6 and —#& angles: (Qg)+s = —(Q1e)-s and (Oyg)is = —((Q26)—p, resulting
in A=A =Dig =Dy =0.
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where the subscript s means symmetric

Figure 6.10. Examples of symmeiric laminate ply orientations and codes.

X g Yy
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Figure 6.11, Antisymmetric laminate and code.

6.4.4 Cross-Ply Laminates

A cross-ply laminate contains an arbitrary number of plies, each with a fiber
orientation of either 0° or 90°, and it can be either symmetric or antisymmetric.
For the symmetric cross-ply, [B] = 0, but for an antisymmetric cross-ply laminate,

[B] can be shown to be
B 0 0
IB] = l 0 -Bj, O:l
0 0 0

Since fiber orientations are either 0° or 90°, (¢ = (26 = 0 for both plies. There-
fore, Ay = Ay = By = Bog = Dy = D = 0, which is true for all cross-ply
laminates.

6.4.5 Angle-Ply Laminates

Angle-ply laminates have an arbitrary number of layers (). Each ply has the same
thickness and is the same material. The plies have alternating fiber orientations of
48 and —#&. An angle-ply laminate can be either symmetric or antisymmetric, and
O} is fully populated. Depending on whether the laminate is symmetric or anti-
symmetric, certain simplifications can be made in identifying components of [A],
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[B], and [D]. Examples of both symmetric and antisymmetric angle-ply laminates
are shown in Figure 6.12.

=
//ﬂf

%’/////x’

e
AONNNNNENNY AN,

symmetric antisymmetric

Figure 6.12. Symmietric and antisymmetric angle-ply laminates.

Symmetric. The symmetric angle-ply laminate has an odd number of layers
and [B] = 0. Since the plies alternate between +6 and —8, the shear terms
0,¢ and O, change sign between layers, while all other components of [Q]
remain unchanged. For an n-ply laminate of total thickness A, the [A] and {D]
terms that are easily related to [Q] are

(A1, Ap, A1z, Age) = h(Q)), O, @12, Oss)

Y — —
(A1, Azs) = (;) Q6. Q)

By .
(D11, D22, D12, Des) = (_15) Q115 Oz @17, Qo)

R (3n? - 2)

(Dyg, Dg) = ( 203

) (@16, O26)

Antisymmerric. The antisymmetric angle-ply laminate has an even number of
layers (n). It is unique in that only the shear terms of the [B]) matrix are present
{B\¢ and Bag). The shear terms of [A] and [D] change from the symmetric
representations just shown to Ajg = Az = D¢ = D2g = 0. The nonzero shear
terms of [B] are

RN
(B16s Bzs) = — (ﬁ) (Q16, P26}

As the number of layers becomes larger, By and Byg approach zero.

6.4.6 Quasi-Isotropic Laminates

A quasi-isotropic laminate results when the individual lamina are criented in such
a manner as to produce an isotropic [A] matrix. This means that extension and
shear are uncoupled (A5 = Az = 0}, the components of [A] are independent of
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laminate orientation, and for the quasi-isotropic laminate

Ay Az O
[Al= |Az An O
0 0 Ag

The conditions of isotropic response only apply to the [A] matrix. The [B] and
[D] matrices may or may not be fully populated, and extension—shear coupling is
possible. Several rules apply for a quasi-isotropic laminate:

1. The total number of layers must be n = 3.

2. All layers must have identical orthotropic elastic constants (they must be the
same material} and identical thickness.

3. The orientation of the kth layer of an n-layer laminate is

k=1

n

&

Examples of lamina ply orientations which produce an isotropic [A] matrix are
shown in Figure 6.13. These two examples can be altered by making each Jaminate
symmetric. For example, instead of [60/0/—60], the laminate could be [60/0/--60];.
This condition would not alter the fact that [4] is isotropic. The components of
[A]} are different in each case, and [B] and [D] change,

n=3 n=4
[e=1 k=2 L _,
Lk=2 | P \\ | s
~_ | |
/
~ . L=—j%— I
// D?MS Y /l w, 34 y
./k=3 - r_/<
I w3 N\
Fx=4 T4 N\

=60 45 b
60 - 5 —
Q o]

Figure 6.13. Examples of ply orientations for quasi-isotropic laminates.

A laminate may be quasi-isotropic and not appear to follow the rules cited. For
example, a [0/—45/45/90] laminate is quasi-isotropic, and if each layer were
oriented at some angle (assume 460"} from its original orientation, [A] remains
isotropic. The reotientation of each lamina (or the laminate as a whole) by +60°
results in a [60/15/~75/—30] laminate.
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6.4.7 General Laminates

A general laminate does not conveniently fit into any of the specifically designated
categories previously discussed. They consist of an arbitrary number of layers
{either an even or odd number} orented at selected angles with respect to the
x-axis. Simplified rules for estimating components of [A], [B], and [D] do not exist
as they do for other types of laminates. Each of these matrices is typically fully
populaied, and residual curvatures are generally present. A [(/3:45/90] appears to
be a general laminate, but is actually quasi-isotropic. Examples of several general
laminate stacking arrangements are shown in Figure 6.14.

vl i vl

90 0 45
0 45 45
45 30 90
90 -60
0 30 60

Figure 6.14. Examples of general laminate stacking sequences.

6.5 Laminate Analysis

L.aminate analysis requires the solution of equation (6.33) for the mid-surface
strains and curvatures. Rather than inverting the entire 6 x 6 matrix relating strain
and curvature to lpads, an alternative procedure can be used. Numerical difficul-
ties may arise when symmetric laminates ([B] = 0) or other laminates with a large
number of zeros are encountered. Equation {6.33) can be written as two equations,
one for loads, and the other for moments:

(N} = [AJe%) + (Bl{x)
(M) = [BUE®) + [D]{x}
The first of these can be solved for {£°} as
(%) = (A1 (N} — [A]7'[Blix)
Substituting this into {M} gives
(M} = [BILA] (N} + (D] — (BYA]'(BDix)
Next we define an intermediate set of relations between [A], [B]. [P], and their

inverses as

[A*] = (A} (8] = [A]7'[B]
[C*] = [BNA] ! [(D*] = [D] - B][A) (8]
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This results in the following representation of mid-surface strains and curvatures
in terms of {N} and {M}:

) le o)l

Solving the {1(«\1r } equation for {x} yields
(x} = D' (M} - (D™)7'[C* )
Substituting this solution for {«} into the previous solution for {¢°} results in
(%) = ("] = (B'UD* T [C*DINY + [B*1[D°) (M)

In order to have a more concise form of solution, the matrix multiplications just
identified are replaced with the following definitions:

[A] = [A*] - (B*1[D*]'[C") [B8] = [B*1[D*]"! 6.34)

[C] = —-{D*]'[C"] (D] = (D!

The resulting solutions for {€°} and {«x) as a function of {f\? } and lﬁ’ } can be

written as -
& A | B N

. = { ------- J .- (6.35)
K | DilMm

where [C'] = [B']". This relationship between [C'] and [B'] is verified by standard
matrix techniques applied to the equations of (6.34).

After the mid-surface strains and curvatures are deterrnined, the laminate can be
analyzed for stresses, and subsequent failure. The failure analysis can be directed
toward either a single lamina or the entire laminate. Failure depends on the siate
of stress in each lamina, which depends on the [©] for each lamina. If thermal and
hygral effects are considered, the Cartesian stresses in the kth lamina are

oy Ky Oy B«
{(,y} _ Ok +z{x,,}-—{a),}AT—{ﬁy}ﬁ ©.36)
Ty g Kxy Oy M i Bey 1

These components of stress can easily be transformed into principal material direc-
tion stresses using stress ransformations. Similarly, one could initially transform
the mid-surface strains and curvatures into material direction strains. The principal
direction (on-axis) strains are related to the mid-surface strains and curvatures by
the strain transformation matnix:

£) Ex €
{ £2 } = [TE]{ Ey } =[T,] €
Y2 £y Vay 4 &

- S H D

£
£
¥

Heo

¥

(6.37)

DD =D
+
[ ]
p——
=
S5 F
[—

=
.
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Corresponding to these strains are the on-axis stresses. If both thermal and hygral
effects are considered, the principal material direction stresses in the kth lamina

are a ) —ay AT — ﬁ[H
{ o2 } = [Qk {52 —ay AT — 525} (6.38)
T2 /g Y12 k

These equations are used in subsequent sections to determine stress variations
through a laminate, failure modes, and general mechanical behavior of laminates.

8.5.1 Analysis of Symmetric Laminates

For symmetric laminates the analysis procedure is simplified since [B] =0, and
{MT} = {MH"} = 0. If the thermal and hygral effects were not assumed to be
representabie by a uniform laminate temperature and average moisture content,
respactively, these moments may not be zero. Since there is no bending —extension
coupling, the mid-surface strains and curvatures can be obtained using a simplified
form of equation (6.35):

%) = [AUNY  («) = (DM}

Symmetric laminates are the most widely used and extensively studied. Tsai [8] and
Azzi and Tsai {9] used symmetric laminates to correlate experimental results with
theoretical predictions from classical lamination theory. They dealt primarily with
cross-ply and angle-ply laminates of varying thickness and found good correlation
between experimental Jaminate stiffness and classical lamination theory predic-
tions. The symmetric laminate is well suited for experimental studies since there
are no restdual curvatures caused by thermal moments, and the response to loads
is simple to predict.

6.5.1.1 Cross-Ply Laminate

Consider the laminate shown in Figure 6.15, for which plane stress is assumed. The
material is AS/3501 graphite/epoxy, with the material properties from Table 4.2
(reference [42] in Chapter 4), The stacking sequence is [0/90s];, and each ply
has a thickness tp, = f == 0.005 in. The laminate thickness is & = 12r = 0.06 in.
The solution is formulated in terms of the total laminate thickness A untl stress
and strain are computed. Thermal effects are considered, but hygral effects are
neglected. The material properties used are as follows: £, = 20.0 x 10% psi, £5 =
1.30 x 108 psi, Gy = 1.03 x 10° psi, v; = 0.30, @; = —0.17 pin/in/F, and a; =
15.57 pin/in/°F. The reduced stiffness matrix is

20.14 0392 0
O] = l0.392 1307 0 ] x 10° psi
0 0 1.03

The | @] for each lamina is

1.307 0392 0

[@lo =1{Q] {Qlow = l0.392 2014 0 ] x 10° psi
0 0 1.03
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Figure 6.15. [0/90;]; cross-ply laminate.

The {A] and [D] matrices are formed following the procedures of Section 6.2.3.1,
which are well suited for numerical work.

Ay =Y (Ot = {2(Q) + 10[Qlso } ¢
2014 0392 0 1307 0392 0
= {2 l0.39z 1307 0 ] x 108+ 10 [0.392 2014 0 ] X 106}:
0 0 1.03 0 0 1.03

5335 4704 0O
= [4.704 204 0 ] x 10%¢
0 0 1236

_ L8 — 1?2 P8 — (1)
D=7 Ok (szf + é) =2[Qlo {I (T) + E} + Qo3

20.14 0392 0O 64
={2{0.392 1307 0 }x](}ﬁ (—)
0 0 103 1

1.307 0392 0
+ l:

0392 20.14 0 ]xm‘5 (1(1%‘0)}:3

(4]

0 0 1.03

1330.7 5645 0
= [56.45 17576 0 } x 1083
0 0 117.1

Incorporating A = 12¢, these matnices are

445 0392 0 0.768 0.033 0
[A] = [0.392 170 0 ] x 108 [D] = [0.033 1.02 0 } x 10%8°
0 0 103 0 0 0.068

Inversion of [A] and {D)] yields

0226 -0.005 O
[M=[

-6
—0.005 0.0589 O ](EL)

0 0 o0972]\ k
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130 -0042 O 10-6
D] = [—0.042 09850 O ] (—3)
0 0 nej\h
Using equation (6.25), the thermal loads are expressed as
(N} =) [0lladen AT = (2(Qlofa)o + 10{Qloola)so} (AT

Using oy and a2 given earlier, application of equation (3.22) yields

@, —0.17
{ao = { oy } = { 15.57 }uim’in/"F
axy 0 0

oy 15.57
{e)op = { ay } = { —0.17 } pinfin/°F
a.ty 90 0

Using these {o}p and {or}ep values, the thermal loads are
20.14 0392 O —~0.17
NT} =2 [0.392 1307 0 ] { 15.57 }
0 0 1.03 0
1307 0392 O 15.57
0392 2014 0 ] { —-0.17 } AT

0 0 1.03 0

209 17.4
= { 68.3 } tAT = {5.69 } hAT
0 0

The Cartesian components of mid-surface strains and curvatures are obtained by

solving equation (6.35) and are
£° A ] 0 J N [A’ | 071 (N+NT
K o0 | D M (VI 4 M

Prior to addressing the problem with applied loads, it is instructive to examine the
effect of residual stresses due to curing. Assuming {N} = (M} = 0, the curvatures
are zero, but mid-surface strains exist and are

+ 10

£y 0226 —0.005 O }

(% = ¢ & :[A']{NT}=[—O.OOS 00589 0
2, 0 0 0972

10-—6 17.4
(—) { 5.69 } (hAT)
h 0
3.90
= {0.245 } x 10°%AT
0
e} =0
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Assuming the laminate is cured at 370°F and room temperature is 70°F, AT =
70° — 370° = —300°F, and the mid-surface strains are

&) 390 ~1170
£ { 0.245 } x 107%(-300) = { ~73.5 }uim’in
Yoy 0 0

The variation of strain through the laminate is given by equation (6.4) as {¢}; =
{€%) + z{x). Since {«x} = 0, the strain is uniform through the laminate, but the
stresses are not. Stresses are determined from the general relationship between
stress and strain defined in Section 6.5 as {o); =[Ok (el — {a)iAT). The
residual curing stresses for the 0° lamina are

6‘0
Ty . x oy
{a_‘,}=[Q]0 £l —{a,}AT
Txy 7 1) ny Uxy 7 0
20.14 0392 0 —1170 — (=300)(—0.17)
= l0.392 1307 0 } X 106{ —73.5 — (—300)(15.57) } x 10°%
0 0 1.03 0

—22.8
={ 5.55 }ksi
0

Similarly, for the 90° lamina

a, 1307 0392 0 —1170 — (—300)(—0.17)
{ay} = [0.392 2014 O ] x 106{ —73.5 — (=300)(15.57) } x 107¢
%0 0 0 103 0

4.55
0

The cross-ply laminate is unique in that once the Cartesian components of stress
are determined, it is simple to define the principal material direction {on-axis)
stresses. This is because in either lamina, one of the on-axis directions coincides
with the x-direction, and the other with the y-direction as iliustrated in Figure 6.16.

Try

Figure 6.16. Orientation of I-2 fiber directions with global x -y directions for a cross-ply
laminate.
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The residual stresses developed during curing depend on both macroscopic
and microscopic conditions. On the macroscopic level the stacking sequence
gives rise to stresses resulting from the variation of stiffness and thermal
expansion coefficients across the ply interfaces between homogeneous layers. A
microscopic effect for thermoplastic matrix composites is morphology associated
with crystallinity gradients during cooling, which influences the macroscopic
internal stresses. Processing conditions are closely related to macroscopic stresses
[10-12]. Experimental techniques for defining residual stress in thermoplastic
and thermosetting composites using technigues of layer removal [11, 13-15],
photoelasticity [16], and laminate failure [17, 18] are often used to investigate
processing-induced stresses. Detailed discussions of these methods are beyond the
scope of this text.

Consider the effect of externally applied loads. The mid-surface strains and curva-
tures can be determined by solving the relation

HEREH

Assume the only load is N,, which can be either tensile or compressive. With
AT = —-300°F,
R N, +NT N, —313
[M:{ NT }:{ —102 }
] 0

Since {M} =0, [D’] is not required, and {«} = 0. Therefore,

& 0226 —0005 0 7 (N.=313) /g6
&5 :[4.005 0.0589 0 { -102 }(T)
¥ 0 0 0972 0

¥

With the laminate thickness being A = 0.06 in, this becomes

& 376N, — 1171
£ 5= [—0.0867Nx - 73.5] x 107
Vay 0

The stress in each lamina {for AT = —300°F) is

o 3.76N, ~ 1170 ay
{ a, } =[Ol { —0.0867N, — 73.5 } - (—300){ oy }
Try 4 & 0 Uy J k

Using the appropriate «'s for each lamina, as determined from equation (3.22),
the stresses in each are

O 75.IN, — 22,800 Oy 4.88N, + 4550
{a_v} :{ 1.36Nx+5550} {a} ={—0.271Nx—1120}
0 0 %0 0

Try rxy
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From these expressions it is a simple matter to evaluate the stresses in each
lamina as a function of applied load N,. In order to produce a tensile stress in the
x-direction in the {° lamina, the applied load N, must overcome the thermal stress
and therefore must be greater than 22,800/75.7 = 301 lb/in. Similar assessments
can be made for the other stress components.

Other loading conditions produce different stress distributions in each lamina. For
example, assume the [0/90s]; laminate under consideration is subjected to four-
point bending as shown in Figure 6.17. The laminate foads in the region of constant
bending moment are also shown in this figure. Assuming the laminate width is
1.5 in, the bending moment used for stress analysis is (—PL/8)/1.5, since bending
moments have dimensions of mn-lbfin (discussed in Section 6.2.3). Assuming no
axial force is applied, the laminate loads consist of only {NT} and the moment
M =—PL/12 ({MT) =0 for symmetric laminates). Therefore,

_ 17.4 ~ —PL/12
{N}={5.69}M_\T {M}={ 0 }
0 0

Using equation (6.35) with the appropriate [A'], [[X], {N1, and {M } results in both
mid-surface strains and curvatures, which are

£ 3.90 k. —0.1083

0 -6 PL -6
€0 1 =00245 0 x 10°AT { k, 3 =4 00035 ) (=) x10
VJ?\‘ 0 kxy 0 ’

bending moment £ ‘ z
In specimen : I

—— “\.\‘ g , , p .
. .
$~: " i ! /" specimen —~ l
ety { .~ () / 1™ y
., ‘ _. -

M, = PL/M2 L

Figure 6.17. Four-point bending of a [0/90s]), graphite/epoxy laminate.

For a total laminate thickness of h = 0.06 in and AT = —300°F, the strain variation
through the laminate is

£x 3.90 —0.1083 Pl
£y, ¢ =4 0245 % x 107%(AT) +z¢ 0.0035 (—3)
0 0 0.06

Vxy

—1170 —501

= { —~73.5 } -+ Z{ 16 } (PL) pinfin
00 0
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The stress variation through the lamina is
Oy - —-1170 —-501 o,
{ Gy } =[Ok { —73.5 } +Z(PL){ 16 } — { oy } AT
Ty M g 0 0 otxy &
For the 0° lamina,

Tx
Oy =
Ty /0

20.14 0392 0 —1170
0.392 1307 0 } x 108 ({ -73.5 }
1.03

0 0 0
—501 —0.17
+z(PL){ 16 }—{ 15.57 }(—300)) % 107¢
0 0
—24,431 —10,084
={ 5960 }+z(PL){ —175 }
0 0

The variable z has two ranges for the 0° lamina: 0.025 < z < 0.030 and —0.030 <
z < —0.025. For the 90° lamina the stress is

o 1.307 0392 0O —1170
{ ay } = (0392 2014 O ] x 108 ({ -73.5 }
Txy 1 G0

0 0 1.03 0

—501 15.57
+z(PL){ 16 } - {—0.17}(—300)) x 107°

0 0
4526 —649
= {—1146} +z(PL){ 126 }
0 0

where —0.025 < z = 0.025. The maximum tensile and compressive stresses occur
at the top and bottom surfaces of the beam (z = 0.030 for compression and
z = —0.030 for tension) and are functions of P and L.

Altering the stacking sequence while retaining the same ply thickness for each
lamina results in a laminate whose response to axial loads is unchanged, but which
has a different response to bending. Consider, for example, the laminate shown in
Figure 6.18.

Since A;; = Y"|Qkf. the [A] matrix is the same as that of the [0/90s};. The
response of either laminate to axial loads is the same. The stress variation through
each laminate due to an axial load changes as a result of the relative position of
each lamina, but the stress magnitudes remain the same.

The response of each laminate to bending is different, a result of the changes in
the [D] matrix that occur when the stacking sequence is aliered. For the [905/0],
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Tstz_ 90 e
12t 0 — — — — —— % %

BiE

Figure 6.18. [0/90s], graphite/epoxy cross-ply laminate.

laminate

3 5 3
=Y 10k (tkzk+ ) [Qlou+2[Q1m{ (2) +‘l'2)}

20.14 0392 0 8
= ”0.392 1307 © J x 10° (—)
0 0 1.03 12
1.307 0392 © 979
+2[0.392 20.14 0] 10"( )}:
0 0 103 12

7267 18.03 0
18.03 9139 0 ]x 10%°
0 0 473

Using & = 12¢ results in

0.042 0.0104 0
(D] [0.0104 0.5289 0 ]x106h3
0 0 0.0274

Comparing this to the [D] for the [0/90s]; laminate shows that its flexural response
is different.

Applying the bending moment shown in Figure 6.17 and retaining the same {N}
produces a strain variation through the laminate of

Ex —1170 —9231
{ £y } = { —73.5 } +z{ 181 }(PL) pinfin
Yy 0 0

The resulting stresses in each lamina are computed to be

Oy ~24,431 — 185,841
{ oy } = { 5960 }+Z(PL){ —3382 }
Ty /0 0 0

(o 8 4526 —11,994
{oy} :{—1146}+Z(PL){ 27 }
Tey 7/ Q0 0 )]
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Assuming L = 12 in and p =5 Ib, the variation of &, through the thickness of
each laminate is shown in Figure 6.19. The magnitudes of o, are not as significant
as those of o, and are not shown. The shear stress for each laminate is zero.

0‘03 TT1T l T T‘Ti-[ TTT é] T ] T

0.02 -

0.01 —
£ ooop °© -
N

001 =~ 9040, '. =

-0.02 - -13- [0/90g) | —

—0.03 11111_41]_1_111111|1|13.‘4. 1131 [

- sy

I
-100¢ -80 -60 -40 -20 Q 20 40
Axial Stress (ksi)

Figure 6.19. o, through [0/90s]; and [0/0], graphite/epoxy laminates.

The stress distribution through the laminate is not symmetric for cases of pure
bending since the strains are functions of [NT} and {Ajf }. If thermal effects are
ignored, the distribution is symmetric. The components of [D] for the [0/90s],
laminate are smaller than those of the [905/0]; laminate, meaning it is more flex-
ible, which results in higher stresses. The (° tamina for each laminate are oriented
with their fibers in the direction of the applied moment. Placing the 0° lamina
farther from the mid-surface increases the overall laminate stiffness. Both lami-
nates respond in the same manner to axial loads, but their response to flexure can
be altered by the appropriate arrangement of each lamina.

These examples do not represent typical cross-ply laminate behavior. The require-
ment for a laminate to be classified as cross-ply is that each lamina be either 0°
or 90°, The laminate itself can be either symmetric or antisymmetric.

6.5.1.2 Angle-Ply Laminates

Two symmetric angle-ply laminates with [B] =0 and (M7} = {M"} =0 are
considered. The first is the [£45};; laminate referred to in Section 4.3.3 as a
candidate for determining (3, and the second is a [15/—15,]; laminate.

[£45];; Laminate. The stacking sequence and loading condition for determination
of Gz is shown in Figure 6.20. The test coupon geometry for this specimen is
identical to that of the 90° tensile test specimen described in Section 4.3.1. Since
a tensile test is involved, end tabs are required. Each lamina is assumed to have a
thickness t, with a total thickness of 8¢. The stiffiness matrix for each lamina is

On QO 0
[Qles=| G2  On +0y
0y 01 O
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Figure 6.20. [£45],; laminate for determination of Gya.

Where the +Q,; and —(;; terms correspond to the +45° and ~45° lamina, respec-
tively. Because of symmetry, the +45° and —45° lamina combine to form an [A]
matrix i which Ay = Aze = O

all @12 0
[Al={0, O, 0 |@3)
0 0 O

Estimating G, from this laminate requires strain gage data. The strain gages are
applied after the laminate is cured, so they cannot be used to evaluate residual
strains, and thermal effects are not considered. Hygral effects are also neglected.
From the applied loads shown in Figure 6.20, the load-strain relationship for the

laminate is L
N, n Q2 O £y
{ 0 } =|Qn 0n 0 [@&) 52
0 0 0 O v
From this we get

Ny =8(Qy16) + Opae)t

0= 8(61282 + anfg)f =1 E{; _%80
11

0 = 80uyn,t = ¥, =0

N, has units of load per unit length of laminate and can be changed 10 an expression
for o, by dividing through by the total laminate thickness (87). Using the 52 just
given, and converting from load to stress,

Ne _ Qn leo
81 O

J, =
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The mid-surface sirains are

[} Nx ( Qll ) 0 _Nx ( QIZ ) 0
=g \m =] &7 e Yoy =0
#\gh-0,/ * #\g,-0.) 7

Since [k} =0, the strain through the laminate is constant. The stress varies
according to the stiffness in each ply, [Q):. The stresses in either the +45° or
—45° |lamina are

oy Qi On FQu —Qn (= =t

{ oy } On  Qu 04 O o,
+45 +06 01 Oss 0 Qn — Qi

Tey

I
_ v _ =2 =2
+06(C1 — 012) ) 91— i
The objective is to determine G»; therefore, the shear stress in the principal mate-
rial direction is required. The principal direction siresses in either the +45° or
—45° lamina are obtained through use of the stress transformation matrix given

in equation (2.3). Since o, = 0, the transformation to the principal material direc-
tion is

- Ty
2 2
oy m 2mn
2 43 Ox
o 2= 1 n —2mn { }: — *1,
T _ 2,2 Txy 2
12 mn m n
Ox
T2

The shear stress is a function of the applied stress o; and is not coupled to Ty,.
The strains in the principal material directions are

€ (e7 + &%) |
{at-1 @ 16)
nz —2¢e] — &)

The shear stress and shear strain for this laminate are 12 = —o,/2 and y12 =
-e%+ e‘;. Using the relation T = Gy, we see

—0 [2 _ . f2 _ 0’1/82

0 — 60 (€976l — ) T 200 — £8/€D)

G =

The applied load can be monitored during testing, and strain gages mounted on
the specimen allow for direct determination of ¢, and z,. The effective modulus
in the x-direction (on a +45° lamina) and Poisson’s ratio in the x—y plane are

related to the measured strains by E; = E 45 = 0,/6 and v,y = vig5 = —£5/e0.
Using these two relations and the expression just shown, G2 is
E
G2 -

=201 + vay)
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[15/—154]; Laminate. Consider the [15/—154] angle-ply laminate in Figure 6.21
with E; =222 x 10° psi, E; = 1.58 x 10° psi, G2 = 0.81 x 10° psi, vz =
0.30, o) =0.011 pin/in/°F, o = 12.5 win/in/°F, and 1ty = 0.005 in. This
example (with the exception of material properties) has been discussed by Tsai [19]
and Jones [2]. Hygral effects are not considered. For this material and the ply
orientations given,

2235 04932 0
0] = [0.4932 1591 0 J x 10° psi
0 0 08l

_ 1973 1.726 +4.730
[Qlsis = [ 1726 1.749 :h0.461} x 108 psi
+4.730 +0.461 2.042

) -

i5 ]
X

T |
Tl -

5

Figure 6.21. [15/—15,]; symmetric angle-ply laminate.

The terms in [Q] for each lamina have units of 10 psi, which are not shown in the
computation of [A] and [D] below, but are reflected in the answer. The laminate
is symmetric, so [B] = 0.

[Ai;] = Z[E]m = (2[@is + 81Q1-15) (0.005)

1973 1.726 4.730 19.73 L7260 —4.730
= (2 [1.726 1.749 0461 | + 8 |: 1.726 1.749  —0.461 :|) (0.005)
4730 0461 2.042 —4730 -0461 2.042

9.86 0.863 —1.42
= l ] % 10°

0.863 0875 —0.138
—1.42 -0.138 1.02

— 1
(D)= [0k (uzﬁ + fg)

0.045)2 N 0.005>
2 12

(0.040)
12

= 2[This {(0.005) ( } +1Q1-1s
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1973 1.726 4.730

=2 [1.726 1.749 0.461] (2.542 x 107%)
4730 0461 2.042

19.73 1.726 —4.730
1.726 1.749 —0.461] (5.33 x 107%)
—4.730 0461 2042

[ 206 18.0 —-1.18 ]

+8

18.0 182 —0.115
-1.18 —-0.115 213

The thermal loads are established after the coefficients of thermal expansion for
each lamina are determined. For the symmetric laminate {MT} = 0. The coeffi-
cients of thermal expansion for each lamina are

a; m? nt
_ 2 2 {a L }
oy = n m
a2
@y )y 2mn —2mn

Therefore, for the 15° lamina the o’s are
o, 0.933  0.067 0.011 (.848
{ o, } = {0.06‘? 0.933] { 155 }:{ 11.66 }uin;in/"p
Cuy 7 15 0.25 -0.25 ’ —6.24
Similarly, for the —15° lamina,

oy 0.933 00677 (01, 0.848
{ ay } = lo.om 0.933} { 125 } = { 11.66}pim‘in/°F
a, ) s L—025 025 ' 6.24

Using these coefficients for each lamina, the thermal loads are

Oy

NT) =D [0k { @, } AT(1)
k

Oy

. [+ % _ Cy
=24 [Chs { ay } +4[Q]_15{ o, } AT(0.005)
Qxy 1 is Uxy 7 15
19.73 1.726 4.730 0.848
= (2 [1.726 1.749 0.461} { 11.66}
4730 0461 2.042 —6.24
19.73 1.726  —4.730 0.848
+ 8 |: 1.726 1.749 —0.461] { 11.66 }) (0.005)AT
—-4.730 0461 2.042 6.24
0.3656
= { 0.9493 } AT

0.1011
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The mid-surface strains and curvatures are found by solving

(B

Assuming the only load applied is ¥,, the mid-surface strains are

&) 136 —1.06 1.74 N, 0.3656
& = {—1.06 12.5 0.217} x 1078 ({ 0 } + {0.9493} ar)
v, 1.74 0217 122 0 0.1011

1.36 —0.333
= {—1.06} x 107%N, +{ 11.5 } x 107CAT
1.74 2.076

Without an applied moment {x¥} = 0, and the strain in each lamina is {&"]. The

stress in each lamina is
Ot
— 4 Oy AT
Qey 415

Oy .
{ Ty } = {Qls
Yay 4 15

[ 1972 1.726 4.730}

=] ‘-cmﬂ' Hmo

s

¥

1.726 1.749 0.461
4730 0.461 2.042

1.36 —-0.333 - 0.848
({—1.06}NI+{ 11.5-11.66 }AT)
1.74 2.076 — (—6.24)

33.22 15.77
= { 1.296}N1 + { 1.515 } AT
9.497 11.32

Ty _ € Oy
5 e (( (5] -
Yey 7/ 15 . Cxy /15

{ 19.72 1.726 —4.730]

SN D

S

1.726 1749  —-0461
—4.730 0461 2.042

.36 —0.333 — 0.848
({_1.06},“{ (LS~ 1166 }M)
1.74 2076 —6.24

16.76 —-3.88
= { —0.309 } N+ { —0.399 } AT
—2.391 —2.843
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The on-axis stresses (in the principal material directions) are found by using the
stress transformation equation for each lamina, resulting in

o Oy 0933 0067 0518
{0’2 } = [T,,]{ } = [ 0.067 0933 —0.518]
112 15 —0.259 0.259 0.866
33, 22 15.77
({1296} {15]5} )
9.497 11.32
36.0 20.68
—{—1485}N,+{ 339}
6.11
ol 0933 0.067 —-0.518
{oz} [T]{ } [0067 0.933 0518]
T2 s 0.25¢ -0. 259 0.866
16.76 —3.88
({ —0.309 } N:+ { -0.399 } AT)
—2.391 —~2.843
16.855 =2.175
= { —0.404}}\1Jt + { —2.105 } AT
2.327 —3.364
Assuming AT = —300°F and N, = 500 lb/in, the stresses are
o, 33.22 15.77 11,879
{ oy } = { 1.296} (500) + { 1.515}(—300) = { 194 }
Vey 115 9.497 11.32 1353

16.76 —3.88 9544
{ --0.309 } {500) + { —0.399 } (—300) = { —35 }

N, +

-2.391 —2.843

——

Fes

L—
Il

-15 —343
o) 36.0 20.68 11,796

{ oy } = { —1.485 } (500) + { —-3.39 } (—300) = { 275 }
LI TS —0.044 6.11 — 1855

oy 16.855 -2.175 9080
{ o3 } = { —0.404} (500) + { —2.105 } (—300) = { 430 }
Tyt s 2.327 —3.364 2173

The distribution of these stresses through the laminate is shown in Figure 6.22.

6.5.2 Antisymmetric Laminates

The analysis procedure for antisymmetric laminates is identical to that for
symmetric laminates, except that {B] # 0. The loss of symmetry complicates

analysis because {MT} # 0 and {MY)} # 0. Extension— —bending coupling exists,
and strains are not constant through the laminate.
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0.04 T T *_la LN B B ¢ 1,3_]_[_8 T
“F o 1
= e I N )
€ owf “ 2o b .
-0.02 {- e .
—0.04 —1 L b *;Ql P TR |BT—J:E Lo
4 0 4 8 12 16
Stress (ksi)
0.04 —I—l—l—.'w"ﬁ'r’"‘| T T T ] Ea._[_z_.g —TT
. — ] H p
- ' i 4
0.02 | N 1o —
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-4 0 4 8 12 16
Stress (ksi)

Figure 6.22. Stress variation in a [15/—15,]; laminate.

For antisymmetric laminates, residual stresses must be considered. Residual
stresses occur because of differences in elastic moduli and thermal expansion
coefficients parallel and transverse to the fibers. When lamina are not symmetrically
disposed with respect to the laminate mid-surface, the in-plane residual stresses
result in out-of-plane warping, which comes from coupling of the bending and
stretching deformations. Residual curvatures resulting from postcure cool-down
are not accurately determined by classical lamination theory, as demonstrated
by Hyer [20-22] for thermal effects and Harper [23] for moisture effects. As
demonstrated by examples in the following section, classical lamination theory
predicts a saddle shape at room temperature for a [90/0] laminate. In reality
this laminate produces a cylindrical shape at room temperature (often two stable
cylindrical shapes are observed for this laminate, since snap-through is possible),
as illustrated in Figure 6.23. This type of unbalanced laminate has been used to
evaluate residual stresses by Narin and Zoller [24, 25], who found correlations to
within 5% of predicted curvatures using measurements of postcure curvature.

IR A A

Figure 6.23. [0/90] laminate shapes (a) at elevated curing temperatures, (b) saddle
shape, as predicted by CLT, and (c) two stable cylindrical shapes that actually exist.
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In predicting the cured shape for antisymmetric laminates, Hyer [21] assumed
a displacement field in the z-direction of w(x, ¥} = (ax? + by*)/2. This applica-
tion of kinematic assumptions regarding mid-surface strains results in nonlinear
displacement fields for Up and V. As a result, the basic definitions of mid-surface
strain and curvature fundamental to CLT are no longer valid. Although it is impor-
tant to predict residual curvatures for antisymmetric laminates, a nonlinear theory
is not attractive because of difficulties in obtaining solutions. The techniques of
CLT remain applicable to a large class of problems.

6.5.2.1 Cross-Ply Laminate

Consider the glassfepoxy cross-ply laminate in Figure 6.24, with E; = 5.6 x
109 psi, E2 = 1.2 x 10° psi, Gy2 = 0.6 x 10° psi, v;2 = 0.26, @y = 4.77 pinfin/°F,
and o; = 12.24 pin/in/°F. This example examines the influence of ply thickness
for each lamina on curing strains and curvatures predicted by classical lamination
theory. The thickness of the (° lamina is >, and the 90° lamina has a thickness of
t1. The total laminate thickness is 2 = #f; + - = 0.30 in, and the centroid of each
lamina with respect to the mid-surface is at 7, = —[(t; + £2)/2 — £1/2] = —12/2
and 73 = [(n +12)/2 - 12/2] = I|/2.

1 tz #_ 0

4 Z,

h _midsuface |y
l t 20 7, y

A

Figure 6.24. Antisymmetric cross-ply laminate.

The [A}, [B], and [D] matrices are written in terms of ¢, and f; as

_ _ 1.218 0.317 0
(A} = [Cloot1 + [Qlot2 = ([0.317 5.682 0 ] 1
0 0 0.60

5.682 0317 0 1
+[0.317 1218 0 12) x 10°
0 0 0.60]
B B r1.218 0317 0 i
[Bi=[Q]90r.zl+[Q]orzzz=( 0317 5.682 0 }zl (—2)
L o 0 0.60 2
5.682 0317 01
+[0.317 1218 0 |1 (—‘)) x 108
0 0 0.60]
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_ - I — _ 5
[D] = [Qloeo (11212 + (é)) + Qo (I'zzfz + (é))
1218 0317 © PRI
= ([0.317 5682 0 ] (r, (—3) + —‘)
0 0 060 2 12
5682 0317 0 (A2 p
+ [0.317 1218 0 ] (:2 (—‘) +—l)) x 10°
0 0 060 2 12
Similarty, {NT} and {MT} are
{NT} = ([Qloofatoott + [Qlola)or2) AT
1218 0317 0 12.24
- ([0.317 5682 0O ] { 4.77 }:1
0 0 060 0
5682 0317 O 477
+ [0.317 1218 0 ] {12.24}:2) AT
0 0 0.60 0
16.42¢, + 29.28¢,
= { 29.28¢, + 16.421, } AT
0
(MY} = [Qlsole)ooniTi + [Cloletorazz

1218 0317 0 12.24 _
= ([0.317 5.682 0 ] { 4.77 }:. (—2)
0 0 060 0 2
5682 0317 0 4.77
+ [0.317 1218 0 ]{12.24}13 (—')) AT
0 0 0.60 0 2

7.28“]12
= {—7.28]!]!2 } AT
o

The mid-surface curing strains and curvatures are found by solving equation (6.35)
with {N} = {NT} and {M] = {MT)}. Assume the temperature difference is AT = —1.
The variation of mid-surface strain and curvature as a function of f2/¢; {or fy/fe)
is shown in Figure 6.25. As indicated here, the saddle shape predicted by classical
lamination theory is evident from the fact that one curvature is positive and the
other negative. As the ratio of r,/t; becomes larger, both curvatures and strains
approach a limiting value, and there is a reduced coupling effect due 1o thermal
expansion coefficient mismatch between adjacent lamina.

The antisymmetric cross-ply laminate should experience only x, and «x, curvatures,
A slight variation in fiber angle for one of the lamina can result in an x—y curvature
and a warped shape after curing.
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o

WAT (x109)

AT (x105)

Figure 6.25. Mid-surface strain and curvature as a function of 1, 1) for an antisymmetric
cross-ply laminate.

6.5.2.2 Angle-Ply Laminate

Consider the [—15;/15] angle-ply laminate in Figure 6.26 with an axial ioad
of 1000 1b applied. Assuming the specimen is 2 in wide, N, = 500 1b/in.
Thermal effects are considered with AT = —300°F. For this material £, =
222 x 10° psi, E; = 1.58 x 10% psi, G2 = 0.81 x 10° psi, vy =0.30, o) =
0.011 pin/in/°F, @, = 12.5 pin/in/°F, and r = 0.005 in. Using these properties,

2235 04932 0

[Q]=[0.4932 .59t 0 | x 10° psi
0 0 081

h=025in

Figure 6.26. [—15,/15] angle-ply laminate.
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Following the analysis procedures previously outlined,

_ 1973 1726 +4.730
[Qlas= | 1.726 1749  +0.461 | x 10° psi
+4.730 0461 2.042

[A:i] =) (@it = (IQ))5 + 40} -15)(0.005)
19.73  1.726 4.730
=([1.726 1.749 0.461}
4730 0.461 2.042
1973 1.726 —4.730
+4| 1726  1.749  —0461} | (0.005) x 10°

—4.730 -046]1 2.042

0.432 0437 -0.069

493 (0.432 -0.709
= x 10°
—0.709 —0.069 0.511

[Bij] = > _[Ohtizx = [OhstH2) + [Q]-15(41)(—1/2)

19.73 1.726 4.730
= ([1.726 1.749 0.461]
4.730 0461 2.042

1973 1.726 —4.730
—| 1L726 1749 —0.461 | | 2(0.005)? x t0°
~4.730 ~0.461 2.042
0 0 473
= [ 0 0 46.1]
473 461 0O

3

(D] = [0k (uzﬁ + %) =1[0ls {(0.005)(0.01)2 +

0.005° }
12

0 0.023
+[Q]—|5{(0.02)(—-0.0025)2+ = }
19.73 1.726 4.730
1.726 1.749 0.461] (0.51 x 107°)
4.730 0461 2.042

19.73 1.726 —4.730
+| 1726  1.749 —0.461 | (0.792 x 107%)

—4.730 0461 2042

2.247 18.2 —-0.130

2569 2247 —1.333
—-1.333 -0.130 2.659
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From these we obtain

[A] = | —2.249 2502  0.054

r 1.589 —2.249 0439
} x 1078
L 0439 0054 13.37

r—1.56 —0.193 —7.28
(B'1=|-193 —0.0238 —0.901 x 1074
L —7.28 090 -—154

-397 481 0.685
5.55 0.685 535

58 —397 555
(D] = ] x 1072

The coefficients of thermal expansion for this material and these ply odentations
has been previously determined to be

a, 0.848
{ o, } = { 11.66 } ninfin/°F
Uy 7 415 4:624

Noting that [Q] has a magnitude of 10°® and {o} a magnitude of 10-¢, the thermal
loads and moments are

[+ " (22
(NT) =10k { oy } AT (1) = {[@hs { oy }
k 15

Qyy oy

o,
+4[0] 15 { o, } } AT(0.005)
—15

Uy
1973 1726 4.730 0.848
= ([1.726 1.749 0.461} { 11.66 }
4730 0.461 2.042 —6.24
19.73 1.726 —4.730 0.848
1.726 1.749 —0.461] { 11.66 }) (0.005)AT
—4.730 —0.461 2.042 6.24
0.1835 —55.05
= { 0.4745 } (—300) = { —142.35 }
0.0503 —15.09

+4

Qxy Cyy

o a,
M7y = Z[@]k { oy } AT %) = {[6]15 { ay } (0.010)
k 15

oy
+4[0] .15 { ay } (—0.0025)} AT(0.005)
—15

Oy
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19.73 1.726 4.730 0.848
= ({ 1.726 1.749 0.461] { 11.66 } (0.010)
4.730 0461 2.042 —6.24

19.73 1.726  —4.7307 1 0.848
1.726 1.749 —0.461] { 11.66 } (—0.0025)) (0.005)AT
-4.730 -0.461 2042 6.24

0 0
Laons) Lo}
~0.000336 0.101

Incorporating the axial load N, = 500 into the expressions for thermal loads and

moments results in
N 444 95 n 0
{N}:{—142.35} {M}:—.{ 0 }

—-15.09 0.101

+4

Solving for the mid-surface strains and curvatures,

(%) = [A'){N} + (B'}{M)

1.589 —2.249 0439 444 95
—2.249 2502 0.054] x 1076 { —142.35 }
0439  0.054 1337 -15.09

—1.56 -0.193 —-7.28 0 946.5
+ [—1.93 —0.0238 —0.90] X 10-4{ " }:{—4563.1 } x 107¢
—7.28 —090 -—154 0.101 —169.6
{c} = [B'1TIN) + [D'1(M)
—1.56 —0.193 -7.28 44495
= [—1.93 —0.0238 —0.90] x 104{-142.35}
—7.28 —090 —15.4 —15.09
586 —397 555 0 —500.7
+ [—3.97 48.1 0.685} x 10-2{ 0 } = { —834.9 } x 107*

555 0685 3535 0.101 —23384

The strain variation through the laminate is
£ & x 946.5 —50,070
{ £, } =< & +z{ Ky } = ({ —4563.1 } +z{ ~83,490 }) x 107°
Yey ny Ky —169.6 —233,840

where —0.0125 < z < 0.0125. The stress distribution through the laminate is linear
and is defined by

o, B 946.5 —50,070 o
{ oy } =[Ok ({ —4563.1 } +z{ —83,490 }) x 1078 — { ay } AT
Yoy ) & ~169.6 —233,840 Oy ) &
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The stresses at the interface of the +15° and —15° lamina (z = 0.0075) are dual-
valued because of the change in [Q] at that location and are similar to the effects
illustrated in Figure 6.3. The stress at the interface must be computed using both
[Ol415 and [Q]_y5 with z = 0.0075. The strain at the interface is

Ex 946.5 —50,070
{ £y } = ({ —4563.1 } + (0.0075){ —83.490 }) x 107°
Yy —169.6 —233,840

570.9
= { —5189.3} x 107¢
—1923 4

The stresses tn each lamina are

a 19.73 1.726 4.730
{ay} ={1.7ze 1.749 0.461}
+15

4730 0461 2.042
570.9 0.848 —4.59
({ -5189.3 } - { 11.66 } (—300)) = { —3.28}1;51
~19234 ~6.24 —4.63
o, 1973 1726 —4.730
{ay} = [ 1726 1.749 ~0.461]
s L-4730 —0461 2042
570.9 0.848 13.61
({ —5!89.3} - { 11.66 } (—300)) = { ~1.51 }ksi
—1923.4 6.24 -3.23

The variation of each in-plane stress component through the Iaminate is shown in
Figure 6.27.

Txy

Try

T T LA T T T T T T T T
0.010 } '-‘ ] ! T ] —
A —O— Oy
0.005 - R a- O -
- . e T
€ o.000)- i XY ]
[ L,
~0.005 ]
-0.010 - .
a1l Ly 1o 'I: FEEPRETEIT I G SRR T A B
-10 0 10 20 30 40
Stress (ksi)

Figure 6.27. Stress variation through a [—15,/15] angle-ply laminate.

6.5.32 Nonsymmetric Laminates

For completely nonsymmetric laminates, the [A], [8], and [D] matrices are
generally fully populated, and for cases in which thermal effects are considered,
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{MT} # 0. Consider the [90/45/0/—45] laminate in Figure 6.28. The elastic
constants, loading condition, and temperature difference are E) = 26.25 x 10° psi,
E; =1.50 x 10° psi, Gi2 = 1.04 x 10% psi, v = 0.28, @, = 2.0 pin/in/°F, o =
15.0 pin/in/°F, AT = —300°F, ¢ = 0.005 in, {M} = 0, and N, = 500 1b/in, Hygral
effects are not considered.

af [
t 0 +Z
X - _ 7 {
I -z
4t 90

Figure 6.28. {90/45/0/—45] laminate.

For this material we compute

£26.37 0422 0
[0)=(0l= |0422 1507 0 | x10°
L 0 0 1.04J
[1.507 0422 0
[Qlo= |0422 2637 0 | x 10°
04

0 0 1.

r 822  6.140 46215
] x 10°

[Olias = | 6.140 822  +6.215
L+6.215 46215 6.758

Following standard procedures [A], [B], and [D] are

[Qloo(4) + [Qlas(28) + [Blo(?) + 1045 (20)
r0.326 0.133 0
] x 10°

(A]

= [0.133 0.699 0
0 0 0.161

(B] = [Qloo(41)(—2.5¢) + [QLas(26)(0.5¢) + [@lo()(2t) + [Q]-45(20)(3.51)

r 259 1.14  —0.932
=| 1.14 —4.87 —0.932} x 10°
[ 0932 —0.932 1.14
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_ 41y _ 2ty
[D] = [Qlso ((40(—2.502 + %) +{Qlss ((2;)(0.5;)2 + %)

— 3 _ ) 3
+1Qly ((f)@rf + %) +[0)-ss ((2:)(3.5:)2 + %)
462 20 -186
220 128.0 —18.6}

—18.6 -18.6 267

In order to establish the mid-surface strains and curvatures, [A’], [B’], and |D'] are
required and are

[A1=}-0990 291 —0.541
L —2.48 —0.54! 10.2

r—364 —0501 0.114
] x 107*

r 6.56 —0.990 -2.48
] x 107°

[B']1=]-0272 146 1.73
196 -0.191 -4.16

- 535 —0.372 1.26
D= |-0372 162 1.29] x 1072
1.26 129 795

The thermal loads and moments are determined once the coefficients of thermal
expansion for each lamina are established from equation (3.22) to be

2 15
[y = { 15} pininF  {algo = { 2 } uin/in/°F
0 0

8.5
[} ias ={ 8.5 } pin/in/°F
FI13

Thermal loads and moments are determined from equations (6.25) and (6.26) to be
{NT} = [000(0.02){ar}og + [Q145(0.01){er}ss

—477
+ [Q10(0.005)}{ato + [@]-45(0.01 ] a5 = { —637 }
0

{MT} = [0)06(0.02)(—0.0125){cr}s0
+ [Q145(0.01)(0.0025){e}45 + [Q1o(0.005)(0.0){a}o
—16
+ [@_45(0.01)0.0175) (&} _s5 ={ 1.6 }
0

Combining the thermal loads and moments with the applied loads yields

R 23 _ -1.6
{N}={—637} {M}:{ 1.6 }
0 0.801
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The mid-surface strains and curvatures are
{7} = [A'}{N} + [B'){M)
6.56 —0.9%0 248 23
= [—0.990 2.91 —0.541] {-—637} x 10~¢
—2.48 —0.541 10.2 0
-3.64 -0.501 0.114 —~1.6 1292
—0.272 1.46 1.73 ] { 1.6 } x 107% = { —1461 } x 107°

1.99 —0.191 -—-4.161 L0.8301 —395

+

{x)] = [BF}N] + [D'){M)}
—3.64 —0501 0.114 23
= [—0.272 1.46 1.73 ] {—637} x 1074
199  —0.191 —-4.16 0
535 —0372 1267 ¢ —-1.6 —727
+ [—0.372 1.62 1.29} { 1.6 } x 1072 = {-518} x 1074
1.26 129 795} L0830 —457

The variation of strain and stress through the laminate is

Ky 1292 —0.0727
+z{ Ky } = { —1461 } x IO°+z{ —0.05]8}
-395 —0.0457

Kxy

=R -]

£
£

¥

=]

e

Foe

[—
I

]

¥

oy B 0.001292 - 0.0727z o,
{ oy } =[Ok { —0.001461 — 0.05182} — { ay } AT
Ty J & —0.000395 — 0.0457; Gy g

In this expression [Q];, {a}i, and z vary from lamina to lamina, causing linear
variations of stress. For example, in the 0° lamina the stress is

oy 2637 042 0O 0.001292 — 0.0727z
{ oy } = [ 042 151 0 l x 10% ({ -0.001461 — 0.0518z}
0 0 0 104 —0.000395 — 0.0457z

2
- { 15} x 10—6(—300))
0
For the 0° lamina 0.0075 < z < 0.0125 in, and for these values of z,
g 36.7 e 27
{} 2{4_576}.@{%} ={4_02}ksi
Tey 4 700075 —0.77 Ty J z0.0125 -1.01

After application of the same procedure to each lamina, the variation of Cartesian
stress components through the laminate is defined and shown in Figure 6.29. Using

Txy
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Figure 6.29. Stress distribution through a [%9/45/8/ — 45] laminate.

stress transformations, the principal material direction stress components can be
established. Note that the stresses are dual-valued at lamina interfaces.

6.6 Laminate Failure Analysis

In many cases stress analysis needs to be supplemented by considering laminate
failure. One approach to estimating laminate failure is through experimentally
defining the failure loads for specific laminates. The large number of possible
laminate configurations makes this a time-consuming and expensive procedure.
Numerous failure theories for lamina were presented in Chapter 5, which form
the basis of laminate failure analysis presented herein. Laminate failure analysis
involves two initial phases:

1. Establish the stress distribution through the laminate, recalling that the principal
material direction stresses are required for the failure theories presented in
Chapter 5.

2. Apply an appropriate failure theory to each lamina.

The predicted failure of a lamina does not imply total laminate failure. Some
laminates can function and carry load past the point at which first ply failure
occurs. The Tsai—Hill failure criterion is used to present laminate failure analysis.

6.6.1 Cross-Ply Laminate

The symmetric cross-ply laminate in Section 6.5.1.1 is used to discuss failure
analysis. For the [(/905]; laminate in Figure 6.30, the total thickness is h = 0.060
in. Because of symmeiry, [B] = 0, and there is no curvature due to curing. The only
applied load is N,, which is unspecified for discussion purposes. The mid-surface
strains were determined in Section 6.5.1.1 and are

3.767 3.90
= { —0.0867 }N; + { 0.245 } AT
0 0

DS

£
£

o=
N
!Q
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Figure 6.30. [0f%05], cross-ply laminate for failure analysis.

The Cartesian components of stress in each lamina are

0y 3.767 3.90 oy
{ ay } = QL ({ -0.0867 } Ny + {0.245 } - { oy } ) M)
Try / & 0 0 Uyy 7k
Since the lamina have either 0° or 90° fiber orientations, the principal material
direction stresses are easy to determine. The on-axis stress components are required
for failure analysis, and by accounting for [Q] and {e&} for each lamina (refer to
Section 6.5.1.1}, they are

0 Oy 75.7 76
{0‘2} {O‘y} ={1.36}N;+{—18.5}AT
Tiztyg Ty /2o 0 0
ay oy —0.271 373
{o’z} ={ox} ={ 4.88 }N,+{—l4.83}AT
712 /o0 Txy 4 o0 0 0

The failure strengths are X =X’ =210 ksi, ¥ = 7.5ksi, Y =299 ksi, and § =

13.5 ksi. Initially, thermal effects are neglected (AT = 0). Stresses are due only to
the unknown applied load N,. The general form of the Tsai—Hill failure theory is

G-+ () (%) =

This can be written as

X2 x\?
O'|2—O’10'2+ (?) 022-5- (E) 1'122=X2

Since X = X', the sign of o} is not considered. The sign of «, must be considered
since Y # Y'. Substituting X, ¥, and § into the preceding equation yields two
forms of the governing failure equation:

il

o2 >0 of — o010y + 78407 +2421], = (210 x 10°)
01 <0 of —o0y + 49307 4 24275, = (210 x 10°)?
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Assuming N, > 0, the 0° lamina experiences a tensile o». The failure criterion for
this lamina is

(757N — (75.1)(1.36)N? + 784(1.36N, )2 = (210 x 10°)

Solving yields N, = 2.567 kip/in. For the 90° lamina o> is tensile, and
(—0.27IN,)* — (—0.271)(4.88)N? + 784(4.88N .)* = (210 x 10%)

The solution to this equation is N, = 1.537 kip/in. The 90° lamina is predicted to
fail first, which is not surprising since it is primarily supported by matrix in the
direction of load application. The failure of this lamina does not mean the entire
laminate has failed. After the 90° lamina fails, the 0° lamina can sustain load. This
feature of the cross-ply laminate makes it a useful experimental test specimen,
and symmetric cross-ply laminates are used extensively for the study of matrix
cracking and damage.

6.6.1.1 Post-First-Ply-Failure Analysis

The failed lamina contains a series of matrix cracks as depicted in Figure 6.31.
These cracks form perpendicular to the applied load {parallel to the fibers) and
result in a loss of transverse stiffness in the failed ply. The failed ply is assumed
to have a stiffness only in the fiber direction, which is completely uncoupled from
the transverse extensional stiffness.

matrix
CrACKS

—

Figure 6.31. Matrix cracks in the failed lamina of a {0/90:], laminate.

Matrix cracks are a frequently observed and extensively studied mode of matrix
damage. The number of cracks (termed crack density) increases with load (or
number of cycles in fatigue) until saturation is reached. Saturation is referred
to as the characteristic damage state (CDS). Macroscopic damage modes, such
as delamination, do not usually appear untif the CDS is reached. The study of
matrix cracks has advanced the understanding of damage and failure mechanisms
in laminated composites [26-32] and is beyond the scope of this text.

In order to completely assess the effects of first ply failure, we must analyze the
problem again, as discussed by Tsai [19]. The analysis is complicated by now
having two materials to consider: the original material (0° lamina) and the failed
material (90° lamina). The original material remains unchanged with [Q] = [Qlo.
The failed ply is characterized by degrading the 90° lamina. Degradation of the
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failed ply applies only to the matrix, which is assumed to have failed. Although
some damage may have been sustained by the fibers, they are assumed to behave
as they originally did. A schematic of an isolated segment of the failed lamina is
shown in Figure 6.32.

plane of
matrix crack

Figure 6.32. Isolated segment of failed lamina.

Although the matrix has failed, it is assumed that it has not separated from the
fiber. Therefore, in the fiber direction, the stresses and strains can be related by
O11. No loads can be supported by or transferred across the cracks. Therefore,
there is no coupling between axial and transverse strains, and @ = 0 for the
failed ply. Similarly, shear stress is assumed to be eliminated since there is no
available path for shear transfer across the cracks, and Q4 = 0. Since cracks form
parallel to the fibers, no transverse normal loads can be supported, and Q2 = 0.
Based on these arguments, the stiffness matrix for the failed ply only is

On 0 O 20,14 0 ©
[Q]=[O 00]:[0 oo]xloﬁ
0 0 ¢ 0 0090

For the failed lamina the [Qlyy matrix is

0 0 0
[Oleo = [0 20.14 0] % 10%
0 0 ©

This resulis in new [A] and [A'] matricgs. The new [A] matrix is formed exactly
as it originally was, with the degraded |(Q]s replacing the original [(}g. The new
[A] matrix is

Aij =Y [Qlete = {200 + 10[Qoo}t
2014 0392 0 0O 0 0
:{2[0.392 1.307 0 }x10°+10[0 20.14 0] xloﬁ}:
0 0 103 0O o 0

4024 078 0O
= [0.784 20401 0 } = 10%
0 0 2.06
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Using k& = 121, the original and degraded [A} matrices can be compared:
Original [A]

445 0392 0
0392 170 0O ] x 10%h
0 0 1.03

[A] =

Degraded [A]

3.353  0.0653 0
{A] = [0.0653 17.0 0 ] % 10%
0 0 0.1717

The only component not affected by the degraded lamina is A, which is consistent
with the assumption that in the 90° lamina the fibers can sustain load. From the two
matrices shown, it is apparent that the overall stiffness in the x-direction (direction
of the applied load) has been reduced. The change in [A] means that the mid-surface
strains have changed. Using # = 0.06 in, the strains in the failed lamina are

£ N, 497  —0019 0

3= [A’]{ 0 }: l—o.ow 0982 0 ] x 107¢
0 0 0 0 971

Xy

N, 497
{ 0 } = {—0.019} x 107N,
0 0

In the 0° lamina the stresses are

o, €
{ Ty } = [Q]O &
Trav /0
: Y

4.97 100
{ —0.019 } N, = { 1.92 } N,
0 0

In the 90° lamina the degraded [Qlg is used and the stresses are

0392 1307 0O
0 0 1.03

(=R R 1

[20.14 0392 0 ]

=

o (= 0 0 07 497 0
{ oy } =[Qlw{ &) 3 = lo 20.14 0} { —-0.019 } N, = { —0.385 } N,
Tev 7 9p },J?y 0 0 0 0 0

The 0° lamina now supports a greater stress in both the x- and y-directions, since
the portion of the applied load originally supported by the 90° lamina has been
transferred to the 0° lamina. The 90° lamina will only support a load in the
y-direction. Since the 90° lamina has failed, the failure criterion is applied to
the 0° lamina, yielding

(100N ) — (100N 1.92N,) + 784(1.92N ) = (210 x 10°)?
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Solving this equation results in N, = 1.857 kip/in. Although higher than the first
ply failure load (¥, = 1.537 kip/in), this load is not significantly higher, nor does
it represent the catastrophic failure load for the laminate. Failure of the (° lamina
begins with matrix cracks parallel to the fiber, as with the 90° lamina. In order
to define the load at which total laminate failure occurs the (° lamina is also
degraded. The new [Q] for the failed 0° lamina is

B 2014 0 0
[Q]0=[Q]0=[ 0 0 0] x 10°
0 00

Reformulation of the extensional stiffness matrix using the degraded properties for
both the 0° and 90° lamina results in

Ay =3 _[Qlte = {21010 + 10[(190}0.005)

2014 0 0 0 0 0
—_-{2[ 0 0 O]x106+10[0 20.14 O]x106}0.005

0 00 0 0 0
02014 0 ¢
=[ 0 1.007 O}xl()(’
0 0 0

This results in new mid-surface strains, which are

N, 4.97
=[A’]{ 0 }={ 0 }x 107N,
0 0

The resulting stresses in each lamina are

£

[
Swo ko

o~

¥

0

o, L 2014 0 07 (497 100
0 o oollo 0

£
Tey },xﬂy
o, £ 0 0 07 (497 0
{ay} =[Olw § € =l0 20.14 0]{ 0 }Nx:{O}Nx
Tay 4 50 v, o o oll o 0

This represents the stresses in each lamina when only the fibers are capable of
supporting load. The maximum load at which the laminate fails is estimated by
considering the load at which the first ply failed (N, = 1.537 kip/in). At this load
the stresses in the unfailed 0° lamina, from Section 6.6.1, are

Oy o) 75.7 75.7 i16
{Uy} ={02} ={].36}Nx={1.36}(1.537)={2.] }ksi
Tey 7 0 T2 7 ¢ 0 0 0

The maximum failure load in the fiber direction is X = 210 ksi. The unfailed (*
fibers can be stressed an additional 94 ksi. For the failure to be complete the stress
in the outer lamina has been shown to be 100N,. The additional load the laminate
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can support above the initial failure load (N, = 1.537 kip/in) is found by equating
the change in siress, Ao, from the initial to final failure (94 ksi) with the stress at
final failure (100N,):

Aog =94 = 100N, = N, =094
The maximum load the laminate can support is therefore
N, = 1.537 + 0.94 = 2.477 kip/in

Assuming the laminate has a width of 0.50 in, a plot of o, vs £, for this laminate is
shown in Figure 6.33 with experimental data for a similar material with material
properties slightly different from those of the laminate in Section 6.5.1.1. The
theoretical and experimental data show similar trends, but the experimental data
predicts first ply failure (the point where the slope of the stress—strain curve
changes) at a lower level. The bilinear response of this laminate is a result of the
change in laminate stiffness after first ply failure, as indicated by the difference
between the original and degraded extensional stiffness matrices. The bilinear
response is typical of cross-ply laminates. Stiffness loss is an indication of matrix
cracks and is used to identify the onset of matrix cracking in a test specimen.

S L S B R B BRI B
50 |- .
40 |
30 |-
20
10
0

—r theory (AT=0)
@ experimental data -]

1 l 1 1 1 I 1 1 1 l 1 1 1 [ 1 1 1

0 2000 4000 6000 8000 10,000

Axial Stress (ksi)

Axial Strain (pinfin}

Figure 6.33. Stress—strain curve for a cross-ply laminate.

The theoretical curve in Figure 6.33 does not include the effect of curing stresses.
In Section 6.5.1.1 the stresses in the principal material directions (with AT =
—-300°F) for each lamina were determined to be

Oy aj 757N, — 22,R00
{O‘y} ={o’2} ={ 136N, + 5550 }
Txy 0 Tiz2to 0

fo 8 o2 4.88N, + 4550
{J}.} ={O’1 } ={—0.271N1—1120}
rxy 90 Tz /gy 0

Application of the Tsai—Hill failure theory to the 90° lamina results in
(—0.27IN; — 1120)* — (—0.271N, — 1120)(4.88N, + 4550)
+ 784(4.88N, + 4550)F = (210 x 10°¥
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Solving for N, we find the load for first ply failure is N, = 841 kip/in. Post-first-
ply-failure analysis is identical to the case in which temperature was neglected.
The primary exception is that we must compute a new {NT} using the degraded
[Q)ons resulting in

20.14 0393 0 —0.17
{NT} = 2(0.005) ([0.393 131 0 ] { 15.57}
0 0 206 0

c o 0 15.57
5 {0 20.14 0] {—0.17}) AT
0 0 0 0

0.0269 —8.086
= {0.0321 } {—300) = { —9.633 }
0 0

The mid-surface strains for the degraded laminate are

& _ 497 -0019 O N, —8.086
8 Y =[A1UN) = [—0.019 0982 0 ] x 10—5{ —9.633 }
0 0 0 97.1 0
xy
497N, — 40
= { —0.0197, — 9.206} x 1078
0

The stresses in the laminate are now defined by
a;x _ 4.9IN, - 40 o,
{ oy } =[O ({ —0.019N, — 9.206} - { o, }(~300))
Tey J 0 Oy
The stress in each lamina is therefore

o o 2014 0392 0 497N, — 40
{ ) } = { ay } = [0.392 1307 © } ({ —0.019N, —9.206}
0 0 0 0 103 0

12 Txy

1
-~0.17 10 22
_{ 15.5 }(_300)) {102 .+ {608!}
0 0 0

az Iy 0 )] 4.97N, — 40
{o’;} _—.{a,,} [0 20.14 0] { —0.019¥, —9206}
T2 o0 90 0 0 0

Txy

15.57 0 0
- { ~0.17 } (—300)) = { 0.385 }NJ, + { —1212}
0 o 0

Comparing these stresses to those for the unfailed laminate reveals that in the
0" lamina thermal coupling in the x-direction is reduced, while in the y-direction
it is increased after first ply failure. The laminate can be further degraded as it
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was for the case without terperature effects. A plot of the results for this case is
presented in Figure 6.34, along with experimental results and those from the case
with AT = 0.

60 T T T I T T T I T T T 'I T T T I T T T
_J(_—F;- 50 — a‘ _,D —
= 40 |- PR I .
w
2 30 n
&
z 20 ~(r theory (AT=0) .
2 10 ® experimental data

& theory (AT=-300)
0 L | Il L L | 1 1 1 | L 1 1

0 2000 4000 5000 8000 10,000

Axial Strain (pin/in)

Figure 6.34. Stress—strain curve for a cross-ply laminate with AT # 0.

6.6.2 Angle-Ply Laminate

Consider the [15/—154]; angle-ply laminate from Section 6.5.1.2, for which ¢, =
0.005 in and the total laminate thickness is 2 = 0.50 in. Assume this laminate is
subjected to an axial load N, as shown in Figure 6.35.

¥
{ i5
T#
hoat [P
L
5

Figure 6.35. [15/—15,], symmetric angle-ply laminate with N, applied.

In Section 6.5.1.2 the stresses in the principal material direction for an arbitrary
axial load N, and AT = —300°F were determined to be

o 36 20.68
{0’2 } :{—1.485}N,+{—3.39}(—300)
T12 /15 —0.044 6.11

36 —6204
={—l.485}N;+{ 1087 }
—0.044 —1833
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o 16.855 -2.175
{02 } ={-—-0.404}Nx+{—2.105}(—300)
Ti2 7 _15 2.327 —‘3-364

16.855 652.5
= { —0-404}1‘4'; + { 631.5 }
2.327 1009.2
The failure strengths for this material are X = 100 ksi, X’ = 110 ksi, ¥ = 4 ksi,
Y'=13.9 ksi, and § =9 ksi. The direction of N, in Figure 6.35 implies o > 0

for each lamina. Therefore, two possible conditions are considered, one for ¢z > 0
and the other for o7 < (. The Tsai—Hill failure theory is written as

x\? x\?
0,2 — 0 + (?) sr:rz2 + (E) rfz =X2

Assuming o> can be either tensile or compressive, we have two possible failure
conditions to consider:

For o; > 0: 0f — 0107 + 62507 + 123.57}, = 1 x 10'°
For 0; < 0: 0f — 0103 + 51.7502 4 123.57], = 1 x 10'®

Considering the +15° lamina, the failure criterion for a tensile o5 is

(36N, — 6204)2 — (36N, — 6204)(—1 485N, — 445.5)
+ 625(—1.485N, — 445.5) + 123.5(—0.044N, + 13.2)* =1 x 100

This reduces to N2 — 477.8N, — 3.618 x 10° = 0. The roots of the guadratic are
N; = 2156, —1678. Since the applied load is tensile, the negative root is elimi-
nated. This lamina is then evaluated assuming a compressive o,. Similarly, the
—15° lamina is evalvated for a both tensile and a compressive &;. The results are
surnmarized in the following table.

Failure load N, (Ibfin)

Lamina Tensile o9 Compressive oy
+15° 2156 2799
-15° 3019 3052

From this table it is evident that the +15° lamina fails first. The stresses in each
iamina at the failure load of N, = 2156 are

| 71.41 ay 36.99
{ oz } = { —-2.18 } ksi { o3 } = { —0.239 } ksi
T12 /7 s —1.93 Tiz ! _15 6.03
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The failed lamina is now degraded so that the [Q] and (Q] for the +15° lamina are
2235 0 0O 19.46 1.397 5.213
[Qly1s = 1] 0 0| x10° [Dliis=|1397 0100 0374 x 10°
0 00 5213 0374 1.397
The [A] matrix is now
[A] = 0.005(2)([@)415 + 4(Q]_15)
1046 1.397 5213
= 0.010 1.397 0.100 0374
5.213 0.374 1.397
19.46 1.726 —4.730
+4| 1726 1749 —0462 | | x 10°

—4.730 0462 2.042

0.0824 0709 —0.0145

0973  0.0824 -0.137
= x 106
—0.137 —-0.0145 0.0957

Using the coefficients of thermal expansion from Section 6.5.1.2, the thermal loads
with AT = —300°F are

oy oy
NTY =10 { a, } AT(t) =2 {[@J.s { ay }
3 15

Oyy Qyxy

oy -117.2
+4[{0]_15 { oy } (—300)(0.005) = ¢ —230.4
Qyy /5 ~36.4

Combining {NT} with the applied load N,, the mid-surface strains are

0
£x 137 -123 1.77
Vo ANN) = | -1.23 147 0626
0 177 0626 13.1
Yoy

N, ~117.2
x 1078 { 0 }+ -230.4
0 —36.4

1.37 379.5
=4 —1.23 ¥ N, + ¢ —3265.5 ) pinfin
1.77 —828.5
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Since there is no curvature, the strains are uniform through the laminate. The
stresses In the unfailed —15° lamina are

U}
x

Iy £
{ ay } =[0]-15 £
Try / —15

Yoy
19.46 1.726 —4.730 1.37
1726 1.749 —0.462} ({ ~1.23 } N,
—4730 —0.462 2.042 1.77
379.5 0.848
+ { ~3265.5 } - { 11.66 } (—300))
_828.5 6.24

16.165 ~22,996
= { —0.604}1\1,‘ + { —12,719}
—2.299 3460

The stresses in the principal material direction are

2] oy 0933 00669 -0.25
{ a3 } = [T,] { ay, } = l0.0669 0.933  0.25 ]
Tiz 7 315 Tyy 7 15 0.50 —0.50 0.866

16.165 —22,996
({ —0.604}N; + { -12,719 })
—2.299 3460

15.616 —23,171
= { -0.057 } N+ { —12.540}
6.394 —2142

The o, stress in the unfailed —15° lamina is compressive, so failure is predicted
using

(15.616N, — 23,717) — (15.616N, — 23,717)(—0.057N, — 12,540)
+ 51.75(—0.057N, — 12,540)* + 123.5(6.394N, — 2142)* =1 x 10'°

This reduces to N2 — 725N, — 1,982 x 10° = 0. Solving this quadratic results in
N, = 937, which is less than the failure load for first ply failure. Therefore, the
—15° lamina fails immediately after the +15° lamina. The stress--strain curve for
the angle-ply laminate does not have a knee as that for the cross-ply laminate did.

6.6.3 Moisture Effects

Consider the [0/90s], cross-ply laminate of Section 6.6.1 as shown in Figure 6.36.
Both thermal and hygral effects are considered. Since the laminate is symmetric,
{MT)} = 0 and {MH} = 0. In Sections 6.5.1.1 and 6.6.1 we established that for this
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Figure 6.36. Cross-ply laminate involving thermal and hygral effects.
laminate, with A = 0.060,

377 -0.087 O
[A’]=[

N,
—0.087 0982 0 ] x 107% |N}={ 0 }
0 0 £.10 0

1.044
W) = { 0.341 } AT

The hygral loads are determined using equation (6.29):

(MM} = 2(0.005)([Q)o{ B0 + S[Qleo{Blee)M

The coefficients of hygral expansion for this material are 8y = 0.0 and 8; = 0.44,
The moisture coefficients for each lamina are defined from equation {3.31) to be

Bs 0 B. 0.44
{ﬁ}0={ﬁy} ={0-44} {ﬁ}so“—'{ﬁy} ={ 0 }
ﬁ:y Q 0 ﬁxy 90 0
Therefore, (N9} is

20.14 0392 0 0
(vH) = (2 [0.392 1307 0 ] {0.44
1.03

0 0 0
1.307 0392 0 0.44
+ 10 [0.392 20.14 0O ] { 0 }) (0.005)M
0 0 103 0
0.0305
= {0.01437} x 10°M
0

The total laminate load [ﬁ }is

0.341AT + 14,370M

[ Nu+ LOSAT + 30,500
(V)= { }
0
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The mid-surface strains are

~ 377 -0087 0O
{£°}=[A'}{N}=[—0.087 0.982 0]

0 0 8.10
N, + LOAT + 30,500M
x 1079 ({ 0.341AT + 14,370M })
0

—0.087N, + 0.244AT + 11,458M
0

3.77N,. + 3906 AT + 113,735M
{ } x 1076

As previously demonstrated, the 90° lamina fails first; therefore, we focus on
that lamina. The Cartesian components of stress in the %0° lamina are defined by
{o} = [Qloole’} — {also AT — {BlooM:

oy 1.307 0392 0
{a_,, } = [0.392 20.14 O :l
9%

0 0 1.03

3.77 3.906 — 15.57
X 10"< ({ —0.087 } N, + {0.244 — (=0.17) } AT)
0 0

0.113,735 - 044y
® 10—°+{ 0.011,458 }M>

Ty

0
Oy 02 4.893 —15.09 —421,986
{cr, } ={a| } = {—0.274}1\)’1-{-{ 3.76 }AT+{ 102,693 }A_J
Tey 4 9p Tzl oo 0 0 0
Assume AT = —300°F, and after 1 hour of exposure to a humid environment,

M = (0.00573. These conditions result in
gy = —0274N, — 540 o0, = 4 893N, + 2109

Recalling X = X' =210 ksi, ¥ = 7.5 ksi, ¥ =299 ksi, and S = 13.5 ksi, the
failure criterion can be written as

(—0.274N, — 540)* — (—0.274N, — 540)(4.893N, + 2109)

210\? 5 -
+{ 55 ) @.893N +2109)" = (210 x 10°)

This reduces to N? + 862N, — 2.164 x 10° = 0. Solving results in a predicted
failure load of N, = 1102, which is larger than the case without moisture (625).
Moisture causes swelling, which reduces the strain and subsequent stress in the
lamina. Increasing the average moisture content increases the predicted failure load.
The increased failure load with exposure to moisture is misieading. As moisture
content increases, the strength of the lamina decreases as a function of exposure
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time and M. The strength parameters used in this example did not consider the
degradation of strength with moisture content. The analysis presented may be
applicable to short-time exposure, but not long-time exposure. Detailed discussions
of the effects of moisture can be found varicus references [33-35].

6.7 In-Plane Laminate Strength Analysis

Laminate strength analysis focuses on the entire laminate and uses the concepts
of strength ratios from Section 5.5.2.1 and presented by Tsai and Hahn [36].
The discussions presented herein do not include thermal or hygral effects. Their
inclusion would alter the magnitudes of stress components, while the analysis
procedures remain the same. The Tsai—Wu theory failure theory is used in the form
{F]]Olz + 2F 007 + Fzgffzz + F&I%Z]Rz + [Fi0y + Fz05]R = 1, where R is the
strength ratio. For a multidirectional laminate the in-plane strength consists of
multiple strength ratios (R and R’). These pairs of strength ratios are a function
of lamina ortentation and applied load, and one pair will exist for each ply of the
laminate. When the analysis is completed, a failure ellipse for the entire laminate
is constructed.

The cross-ply laminate in Figure 6.37 is used to illustrate the concepts behind in-
plane strength analysis. For this problem the thicknesses of the 0° and 90° lamina
are varied by controlling the number of plies in each lamina.

'x/ y

0
20
0

Figure 6.37. Symmetric cross-ply laminate for strength analysis.

The number of plies in each lamina is defined by Ny (number of 0° plies) and
Ngy (number of 90° plies). Each ply is assumed to have the same thickness
(¢ = 0.005 in), and the total laminate thickness is defined by A = (Ng + Neo}t. The
material properties for this laminate are £, = 22.2 x 10° psi, £; = 1.58 x 10° psi,
Gz =081 % 10% psi, 11 =0.30, X = 100 ksi, X' =110 ksi, ¥ =4 ksi, ¥' =
13.9 ksi, and S = 9 ksi. Assuming F}, = —1/2, the strength parameters are Fy; =
9.09 x 107!, Fjz = —6.392 x 10719, Fp = 1.799 x 1078, Fgs = 1.235 x 1075,
Fy=9.1x 1077, and Fy = 1.78 x 10~*. The siiffness matrix for each lamina is

2232 0477 0 B 1.59 0477 0
Ol = [0.477 1.59 0 ] x 10° [Qleo = [0.477 2234 0 | x 108
0 0 162 0 0 162
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The extensional stiffness matrix is defined by {A]= ([QloNo + [QleoNoo) ¢.
Bending is not considered, so [D] is not required, and since the laminate is
symmetric, [B] = 0. The mid-surface strains are determined in terms of an applied
load divided by the total laminate thickness h, which can be regarded as a normal
stress applied to the laminate in a specified direction. The first laminate considered
is a [0/90]; laminate. For this case we have Ny = Ngg = 2 and £ = 4r. In order to
define the failure surface for this laminate, a series of unit load vectors are applied.
For example, the initial unit load vector is

R N; 1
0 0
The [A] and [A’] matrices are determined in terms of the total laminate thickness
h to be

11965 0477 ©
[4] = [0.477 11965 0O Jh x 108
0 0 1.62

0.0837 —0.0033 a 106
[AT) = [—0.0033 0.0837 0 ] ( )
0 0 0.6173

The mid-surface strains are

0.0837 -00033 O 10-5
(% = [—0.0033 0.0837 0 ] (—) {
0 0 0.6173

0.0837 N
= { —0.0033} (—) x 1078
0 h

The stress in the principal material direction for each lamina is

o1 B 1.866 |
{olo= { o7 } = [Qoie"} = {0.0346} (f)
0 0

712

o) _ 0.1313 N
{oloo = { a2 } = [Qloofe’} = { —0.0347} (TI)
S0 0

T2

where N, /h is the applied stress in the x-direction. The failure load for each
lamina is identified using strength ratios. For the (° lamina we initially define
R = N,/h, so the stresses can be expressed as o) = 1.860R, 0, = 0.0346R, and
112 = Q. Failure for this laminate is predicted from

9.09 x 107 1(1.866R) + 2(—6.392 x 107'M)(1.866R)(0.0346R) + 1.799
x 107%(0.0346R)® + 9.1 x 10 7(1.866R) + 1.78 x 1074(0.0346R) = 1



Www.iran—-mav ad.com

Slge fpwiige g lgmiils 1> 0 Lamimate Analysis 253

This reduces to
2.555 x 1071°R2 + 7857 x 10~°R = 1
RE+3075x 10°R—3914x 10° =0

The roots of this quadratic are R = 49.05, —79.82 ksi. In a similar manner, the 9%0°
lamina can be evaluated. For the 90° lamina the failure criterion is R? + 7.44 x
10°R — 3.193 x 10° = 0. The roots of this equation are R = 30.5, —~104.9 ksi.
These roots identify the axial load at which failure of each ply is predicted.
In addition, other unit load vectors could be used to predict lamina failure. For

example,
R 4] 0 N N, 1
({3} {5
] ; 0 0
N, 1
o-{5)-{2)
0 0

This analysis can be repeated for other load vector combinations, resulting in
different sets of R for each case. The results are then plotted for each lamina to
define the boundaries of the failure envelope for specific unit load vectors.

An alternative approach is to define the principal material direction stresses in terms

of arbitrary applied loads N, N, and N,. For example, assume the laminate in
Figure 6.38, where N,, = 0.

N

Figure 6.38. Laminate subjected to N, and N,.

The mid-surface strains for this laminate and the stresses in each lamina are
defined by

£ N, 0.0837N, ~ 0.0033N, | /o6
€9 3 =[A1{ N, 3 ={ —0.0033N, + 0.0837N, (T)
o 0 0

xy

) 0.0837N, — 0.0033N, 10-6
{ a2 } =[Ok { —0.0033N 4+ 0.0837N, } (T)
T2ty 0
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The stresses in the 1-2 plane can be written in terms of the stresses in the x—y
plane, which are defined as o, = N,/h and 6, = N, /h. For the " lamina we have

a0y
a2
Tiz /o

2232 0477 0 0.0837N, —0.0033N, }
{0.477 159 0 ] x 10% ¢ —0.0033N, + 0.0837N, (—h )

0 0 1.62 0
1.866N, - 0.0337N, : 1.8660, — 0.03370,
= ¢ 0.0347N, 4+ 0.1315N, (E) = { 0.0347¢, + 0.13150,
0 0

The Tsai—Wu failure theory for this lamina will be

F(1(1.8660, — 0.03375,)? + 2F 15(1.8660, — 0.03375,)(0.03470, + 0.131570,)
4+ Ful. )+ + F2(0.03470, + 0.131570,) = 1

Expanding and using the appropriate strength parameters results in

2.57 x 107% — 1.63 x 107 Yoo, +3.17 x 1077% + 7.77

x 107%, +2.32 x 10_503, =1

This form of the failure criteria defines the failure ellipse in terms of o, and o, for
the (" lamina. A similar expression can be generated for the 90° lamina. This form
of the failure criteria may be more useful for laminates other than the cross-ply
where ¢, and o3 do not coincide with g, and . The failure eilipses for the 0° and
90" lamina are shown in Figures 6.39 and 6.40, respectively. Included in these
figures are points corresponding to failures associated with varous unit vectors
using strength ratios. The effect of including shear stress would be similar to that
discussed in Example 5.5.

150 T T T T
100 @ unit vector {0,1,0 -
A unit vector {1,0,0
50 - m unit vector {1,1,0 .
- -50 —
o
-100 | —
-150 |- .
200 ] ] ] |
-200 -150 -100 -50 0 50 100
o, {ksi)

Figure 6.39. Failure ellipse for 0° lamina in a {0/90], laminate.

A composite failure envelope for the laminate is formed by combining the results
of Figures 6.39 and 6.40, as shown in Figure 6.41. The intersection of the two
failure ellipses defines the safe region for the laminate.
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o

150 T T
o & uhit vector 1,0.0{ _
# unit veclor {0,1,0
_ 50 — W unitvector 1,1,(_!‘}3_5_5_-_ a —
@ 0 a0 |
x = /
£ -80 — .-'E- Iw] —]
=
-100 LT —
o
150 — ‘W@t O 4 -
B-B
200 ] ] 1 | |
-200 -150 ~100 ~50 0 50 100
o, (ksi)

Figure 6.40. Failure ellipse for 0° lamina in a [0/90], laminate.

150 i l , :

100 - -O- so°lamina ]
so | —— O°lamina _

5 o e,

e -50 |- &° -
~100 (- ~
1580 | T —
-200 | L i |

-200 -150 -100 —50 0 50 100

o, (ksi}

Figure 6.41. Combined failure ellipses for [0/90], laminate.

A similar analysis can be performed for various combinations of ply orientations
and unit stress vectors (or ¢, and o, components). This type of analysis is not
limited to cross-ply laminates.

6.8 Invariant Forms of [A], [B], [D]

Laminate design based on strength can be supplemented with considerations of
stiffness. By controlling parameters such as material and stacking sequence, the
[Al, [B), and [D] matrices can be tailored to meet certain design requirements.
Each component of these matrices can be expressed in compact form as

(Aij. Bij, Dij) = /Qj(], 7. 2%)dz

In this expression Q; ; Is constant for a given lamina, but may vary through the
laminale_,_ as a function of fiber orientation. Each component of [A] is associated
with f [Qi;](1)dz, whereas the components of [B] and [D] are associated with

J10;;1()dz and f[Q;;1(z*) dz, respectively.

The invariant form of Q—j given by equation (3.12) is used to define [A], [B], and
[D], as presented by Tsai and Pagano [37]. From Chapter 3, the invariant forms
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of Q;; are .
91 1 Uy cos26  cosdd
222 U, —cos2f cosdf
) On [ U,y 0 — cos 46 Dl,
O [ | Us 0 —cosd8 U;
Ois 0 sin28/2  sin4dd
| Oy 0 sin26/2 —sindd

The terms Uy to Us are defined by equation (3.11). Consider the terms Ay, By,
and Dy, which can be written as

(An;Bu-Dn):an(l.Z. ) dz
Substituting the expression for Q; from the invariant form results in
(A, By, D) = /[Ul(l. 2,29 + Uzc0s20(1, 2, 2°) + Uz cos48(1, 7. 9] dz

If each lamina is made from the same material, {/;, U3, and U/3 can be brought
outside the integral. Since the limits of integration are —A/2 and h/2, and since
the first term does not depend on 4, this expression can be written as

h3 hy2
An, Bu. Dy =t (h‘U.——)-f-Uz/ cos 26(1, z, 29) dz
12 —hf2

hj2
+U3/ cos46(1, z, z%)dz
—hp2

where # is the total laminate thickness. Since all Q; ; terms can be expressed as

invariants, each A, ;, B;;, and D;; term contains a combination of integrals in 6 and
(1,z,z%)dz. As a result, it is convenient to define additional parameters:

h3
Vo.ep) = ("’ 0, 1—2)
v.m,s,o)=/coszau,z.z2)dz vmﬂ,m=fsin29(1.z,z2)dz (6.39)
V3.0 =/Cos46(l,z, 2)dz Vausn =]Sin49(l,z,z2)dz

For an N-iayered laminate, these integrals can be simplified to

N
Via = Wilzie1 — )
k=1

1 N
Vie =5 > Wiz, 2 (6.40)
k=1
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1 N
3 k)
Vio = 3 Z Wiz, — i)
k=1

where i = | to 4, and the subscripts A, B, and D refer to the corresponding laminate
stiffness matrices. In addition, we define

cos28, fori=1
) sin28,, fori=2
Wi = cosdd,, fori=3 (6.41)

sindf,, fori=4

The angle &, is the fiber orientation for the kth lamina. Using this notation the
components of [A], [B), and {D] are written as

(An, By, Du) U, U, 0 Us 0

(Ax, B2z, D) v, =i 0 s 0 EO(A'B'D)

A B2D) |\ _(Us 0 0 -U; 0 | ] N48D

(Ass, Bss, Dss) - Us 0 0 -l 0 V2(A.8‘D)

(A6, Brs. Dis) 0 0 —U2 0 -Us 3(A.5.D)

(Ase, Bag, Dag) 0 0 ~Uy2 0 Us Vau.s.0)
(6.42)

This form of [A], [B], and [D] can be used to idenify useful parameters such as
optimum fiber orientation. For example, consider a general laminate as shown in
Figure 6.42. In the x, y coordinate system shown, this laminate will respond to
applied loads according to

{ut=15 21}

Figure 6.42. General laminate forms of (A}, [B], and [D].

Instead of using the x, y coordinate system, it may be better to examine the
laminate response in an x’, ¥’ coordinate system.

Rotating the laminate through some angle @, a set of transformed (A}, (B], and [ D]
matrices is developed. The transformed laminate stiffness matrices are designated
as [A], [B], and [D}, which is analogous to the transformation from (Q] to [Q].
The orientation of fibers in each lamina in the x-y coordinate system is £, and
in the x'~y" coordinate system it is 8". These orientations are related to the angle
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Figure 6.43. Definition of & for [A], [B], and [D].

& through the relation 8’ = # — &, as illustrated in Figure 6.43. The transformed
angle & replaces 6 in the invariant representation of [Q].

‘Trigonometric identies for sine and cosine of the angles n (& — @) are needed to
explicitly define {4}, [B], and [D]. For example, the general form of A}, expressed
using the invariants of equation (6.41)is A|y = U Vo4 + U2V 14 + U3V 34. Substi-

tuting for Vga, V94, and V3, from equation (6.39), and recalling that & is used in
the transformed system,

A= U1h+U2/cos29’dz+U3fcos49’dz

Trig identies for 26/ = 2(8 — &) and 4¢' = 4(8 — ) result in a transformed A,
in terms of 8 (the lamina orentation in the x—y system) and ¢ (the orientation
angle of the entire laminate with respect to the X axis). Therefore,

An=Uh+ U, /(cos 28¢cos2® 4 sin 28sin 24 ) dz

+ U; f(cos49cos4¢ + sin4fsind4d)d:

Using the definitions of f cosmfdz from equation (6.39),

Al = Uk + Ua[V14 €08 2@ + Vou sin 28] 4+ U3[ Va4 cos 4D + Vyga sindd)

In a similar manner, the entire [A] matrix is defined as

- U'Woa  UaVia U2V U3V3y U3V

Az UiVoo —UzVig UV UiV,  UsVay 1
Ay UaVoa 0 0 —U4 Vs =13V, g?:%:g
Ags UsVoa 0 0 U3V, —UiVsa cos 4D
Al 0 UzVaa /2 —UaViaf2  UsVae UiV sin 4d
Az 0 UaVaa /2 —UViaf2 —UsVay  UsVay

(6.43)
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The [B] and [D] matrices have the same form as [A], except the V4 terms are
replaced with Vg _and V:p as defined by equation {6.39). The explicit representa-
tions of [B] and (D] are

( 'E” 1 [UiVes UVis UVag UsVig  UsVap ]
EH UwWog —UpVig UV UsVig  UsVyg 124)
Bz  _ UsVos 0 0 —U3Vip —U3Vyp z?:2¢
By UsVos 0 0 —UsVig —UsVas | ] Ccae
Bis 0 UsVag/2 —UVip/2 UsVap UiV sin4®
(By/) L O UaVag/2 —UVig/2 —UsVeg UsViap
— (6.44)
( 2“ rhVop  UzVip LUaVap UsVip  UsVap 7
Dz UWoep —-UsVip UV UsVsp  UiVyp 1
Din | | UsVop 0 0 —UiVip UiV (:;gg:
Dy (= UsVon 0 0 —UsVan =UsVap | o cas
Dis 0 UxVap/2 —UxVip/2 UsVap  —UsVap [ ginge
(D) L O UVap/2 —UzVip/2 —UiVap  UsVip |
(6.45)

Jones [2] presents a complete discussion of special cases of [A], [B], and [D]. Two
special cases are considered herein that involve

2 Z
f (odd function) d2 =0 and / {even function) dz = finite
-z -z

Consider first the antisymmetric laminate in Figure 6.44a. The +o and —a fiber
orientations influence the integrals of V. gp, in equation (6.39). The odd and
even integrands for the antisymmetric laminate are

Odd: cos 26(z), cos46(z), sin28(1, z), sin46(1, %)

Even: cos28(1, 22) cos46(1, z2), sin 26(z), sin 46(z)

{!
o o
o —
(a) Antisymmetric (b) Symmetric

Figure 6.44. Antisymmetric and symmetric laminates.

These result in Vou = Vg = Vg = Vag = Vap = Vyp = 0, which in turn lead to
Al =Aw =B =Bp =8y =Djg=Dy=0
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Next we consider the symmetric laminate in Figure 6.44b for which odd and even
integrands of Vi g ) are
0Odd: cos268(z), cosd48(z), sin 20(z), sind(z)
Even: cos26(1, %), cos46(1, z%), sin26(1, 2°), sin46(1, %)

This results in [B] =0.

The usefulness of [Al, [B], and [D] is illustrated by considering the [—15/15,];
angle-ply laminate in Figure 6.45. The material properties are E, = 26.25 x
105 psi, E; = 1.50 x 10° psi, Gi; = 1.04 x 10° psi, and vz = 0.28. The applied
load is assumed to be N,, and the total laminate thickness is A = 0.05 in (each
ply is 0.005 in}. The stiffnress matrix and invariants are

2636 0422 O Uy =11.07 x 10° Uy = 12.43 x 10°
2= l0.422 1.507 0 ] x 10° U3 =1.297 x 105 Uy = 3.270 x 10°
0 0 1.04 Us = 3.890 x 10°

Ny

Nx

Figure 6.45. [—15/15,], angle-ply laminate.
Since the laminate is symmetric and only an axial load is applied, [B] = 0 and {D]
is not needed. The V4 terms are determined from equations (6.39) and (6.40) to be

Voa = 10r = h =0.050

Vig = co8 20, (Ze41 — 2) = 2[cos(—30) + 4 cos(30)]r = 0.0433

Vaa = sin 20, (2241 — 2 ) = 2{sin(—30) + 4 sin(30)j: = 0.0150

Vig = cos 48 (2e4 1 — 2x) = 2[cos(—60) + 4 cos(60)]r = 0.0250

Vas = sind0, (2141 — z&) = 2[sin(—60) + 4 sin(60)jr = 0.02598

Incorporating these into the expression for [A] results in

Ajs 0.554 0533 0187 0032 0034 .
An 0554 ~-0.533 -0.187 0032 0034 | {
An{ _|0164 0 0 —0032 -0.034; ) "0
A { T 0195 0 0 —0032 —0034|) N0
Ars 0 0094 -0267 0034 -—0033|{_ "
Az 0 0094 -0267 -0034 0033 ] °°

Assuming that it is desired to have Ajs = Az. From the preceding relation,
0.094 cos 2& — 0.2675sin 2¢ + 0.034 cos 4P — 0.033sin 49
= 0.094 cos 2& — 0.267 sin 24 — 0.034 cos 4P + 0.033 sin 4P
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Solving this expression results in tan4® = 1.037, from which ¢ = 11.51°. This
means that in order to get the desired A5 = Asg, the entire laminate must be
oriented at 11.51° to the x-axis. An alternative view is that instead of a [—15/154];
laminate rotated through 11.51°, one could achieve this response by using a
[—3.49/26.51,] laminate. In a similar manner we may wish to have A;] = Ayp.
Following the same procedures as before results in & = —35.4°.

6.9 Analysis of Hybrid Laminates

A hybrid laminate is one in which two or more fiber/matrix systems are combined
to form new, sometimes superior composite material systems. For example, a lami-
nate with both glass and graphite (or other fiber combinations) can be constructed.
A hybrid offers certain advantages over conventional laminates. A hybrid made
by using different lamina materials (glass/fepoxy and carbon/epoxy, etc.) is called
a laminar hybrid. Combining different materials in a single lamina produces an
interlaminar or intraply hybrid. Both types of hybrid laminates are shown in
Figure 6.46.

materiaf A

material B

Laminar hybrid Interlaminar (intraply) hybrid

Figure 6.46. Laminar and intralaminar hybrid laminates.

One reason for using hybrid laminates is economics. The cost of manufacturing
can be reduced by mixing less expensive fibers (glass) with more expensive fibers
(graphite). For example, a mixture of 20% (by volume) graphite fibers with glass
fibers can produce a composite with 75% of the strength and stiffness, and 30%
of the cost, of an all-graphite composite. Applications and physical properties of
some intraply hybrids can be found in survey papers {38-42]. A problem associ-
ated with understanding the behavior of intraply hybrids is the hybrid effect, first
noted by Hayashi {43]. It is related to an inability to accurately model certain
mechanical properties to using rule-of-mixture approaches and has been nves-
tigated to a degree [44-49]. A problem with intraply hybrid composites is the
significant scatter in ultimate strength data.

Conventional CLT analysis procedures can be applied to hybrid laminates, provided
the constitutive relationship for the material is known. In forming the [A], [B], and
{D]) matrices for a laminar hybrid, each lamina may have a different [Q] and [O].
Intraply hybrids can be treated as if they were conventional orthotropic lamina
since [(J] is the same for each lamina. For the purpose of illustration, two material
combinations are used for laminar hybrids and combined to form an intraply hybrid.
A simple rule of mixtures approximation is used to determine the modulus of the
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intraply hybrid, assuming a 50% mixture of graphite/epoxy and glass/fepoxy. The
material properties used the following examples that are presented in Table 6.1.

Table 6.1, Material properties for hybrid laminate examples.

Property Glass/epoxy Graphite/epoxy Intraply Hybrid
Eq (Msi) 55 263 159

E; (Msi) 1.20 1.50 135

G2 (Msi) 0.60 1.00 0.30

- 0.26 0.28 027

oy (pinfin“F} 35 2.0 2.75

a2 (uinfin/°F) 1.4 15.0 132

The analysis of hybrid laminates using CLT is illustrated by considering the [0/90]
laminate in Figure 6.47. In addition to the laminate shown in this figure, a [0/90]
intraply laminate with the same dimensions is also considered. Both laminates are
assumed to be subjected to a normal force of N, = 500 Ibfin, with temperature
effects included.

r . - TgS'
0.05° | Graphite (90 —+
f— Glass (0)
Figure 6.47. [0/90] hybrid laminate.
The {Q] for each material is
r5.603 0318 0
[Qlaess = | 0318 1223 0 | x 10°
L 0 0 0.60]
r26.42 0422 0
[Qlgraphiee = | 0.422 1507 0 | x 10°
L o 0  1.00]
r16.00 0.367 O 7
[Qlinyaply = | 0.367 1358 0 | x 10°
L o 0  0.80]

The [A], [B), and [D] matrices for the laminar hybrid are formed using standard
CLT procedures:

(A} = Z[a]kfk = ([E]glass + lalgraphite) (0.05)
5.603 0.318 0 1.507 0422 0
= ([0.318 1223 0

J + [0.422 2642 0 D 0.05) x 10°
0 0 060 1.00

0 0
0.3555 0037 O
= [0.037 1384 0O ] % 10°

0 0 008
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[B) = Z[Q]kszk ([Q)grass(—0.025) + [Qlgraphive (0.025)) (0.05)

1.507 0422 O 5603 0318 0O
([0.422 2642 0 ] [0 318 1223 0 })(0.05)(0.025))( 10

0 1.00 0 060
512 0130 ©
[0130 3149 0
0 0.50
(0.05)?
12 12

3
1D} = [0k (rﬂ% + i) = ([Qlgtass + [Olgeaphice) (0.05(0.025)2 +
0
0
60

5.603 0.318
z([0.318 1.223

[1.507 0422 0
0 ¢ 0.

+10422 2642 0 D % 10%(4.1667 x 107°)
0 0 1.00

30.8 11518 0

[296.3 30.8 0 ]
0 0 66.67

The thermal loads and moments are determined in a similar manner:

{NT} = Z[a]k )k tx AT = ([-Q]glass{“)glass + [@]graphitc{a}graphilc) 0.05)AT

5.603 0318 0 3.5
= (lO.BIS 1.223 0 ] {11.4}
0 0 0.60 0

1.507 0422 0 5
0422 2642 O ] { 2 }) (0.05)AT

0 0 1.00 0

2.334
= {3.711 } AT
0

{MT} = Z[a]k lohZit AT= ([Q]graphile {a}gmphile - [a]glass {a}glass)(o-ozs)(o-os)AT
1.507 0422 0 15
= (l0.422 26.42 0 ] { 2 }
0 0 1.00 0
5603 0.318 0 3.5
- |:0.318 1.223 0 } { 11.4 }) (0.05)(0.025)AT
0 0 0.60 0
0.267
= {54.99} x 1077 AT
0
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Assuming AT = —300°F results in thermal loads and moments of
—700.2 —0.081
{NT}:{—1113.3} {MT]={—19.497}
0 0

Recalling that for this laminate we apply ¥, = 500,

~ —200.2 R ~0.081
{N}:{_uls.s} {Ml:{—19.497}
0 0

The resulting mid-surface strains and curvatures are determined from
377 0153 0 —200.2
—0.153 194 0 ] x 1076 { —1113.3}
0 0 13.4 0
6.49 0202 0 —0.081
+ [0.202 —5.30 )] } x 1073 { —19.497}

0 0 -~9.84 0

—629
= { —1096} x 107

{e°} = [AN} + [B)NM) =

0
~ _ 6.49 0202 0 —~200.2
{x}=[B’]{N}+[D']{M}=[0.202 -530 0 }XIO {~11133}
0 —9.84
452 -0.184 0 -0.081
+[—0.134 232 O]XIO {—19497}
0 0 15.7 0
—1202
={ 1337 }x 103
0

The stresses in each lamina are defined by

oy ([ -6 ~1202 o,
{oy} — (O} {—1096}x10‘6+z{ 1337 }xlo-s-{ay} AT
2T 0 0 Qxy /g

For the 0° lamina —0.05 < z < 0 and

a, 5603 0.318 o 629
{ay} = 0318 1.223 ] x 10"({—1096} x 107¢
rxy 0

0 0
3097 —63,096
= { 2976 } + z{ 12,529 }

-1202 3.5
+z{ 1337 }xlo- {114}><10 (- 300))
0 0
0 0
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For the 90° lamina 0 < z < 0.050 and
a, 1.507 0.422 0 —629
{ay} = [0.422 2642 0 ] x 10° ({—1096} x 107°
% 0 0 1.00 0
—1202 15
+z{ 1337 } % 1073 — { 2 } x 10—6(—300))
0 0

5624 —12,472
= { —11.471 } +z{ 348,163 }

0 0

Txy

The intraply laminate is analyzed exactly like conventional laminated composites.
Detailed derivations of [A], [B], [ D], {NT}, etc. are omitted. Assume that a [0/90]
intraply laminate with the dimensions shown in Figure 6.47 is subjected to an axial
load of N, = 500 1b/in and AT = —300°F. The laminate load and moment are

~ ~516 . 11.21
{N}:{—1016} [M}:{—n.zl}
0 0

These result in mid-surface strains and curvatures of

~ ~ 248 0105 O -516
{s"}:{A’l{N}HB‘]{M}:{—0.105 248 0 }xlO‘(’{-—IOIt’)}

0 0 12.5 0
0.628 0 0 11.21
+ [ 0 -0628 0] % 10-4{—11.21}
0 0 0 0
—473
= { —1766} x 1078
0
0.628 0 0 -516
{x} = [B)N} + [D'}iM) = [ 0 —0628 0} X 10-4{—1016}
0 0 0 0
298 0126 0 11.21
+ | —0.126 2.98 o] x 10—-‘{—11.21}
0 0 15 0
240
= {2900} w 1078
0

The strain throuvgh the laminate is

£ £ pa 473 240
{sy}= 8(;. +z{xy}:{—l766}x10_6+z{2900}x105
Yay ) Ky 0 0
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Using this strain, the stresses in each lamina are determined to be

oy 16.0 0367 0O —~473
{oy } = [0.367 1.358 0 ] x 10° ({—1766} x 107°
1.'”,- 0 0 G 0.60 0
240 2.75
+z { 2900} x 1075 — { 13.2} x 10'6(—300))
0 0
6434 49,019
= {3109} +z{40,806}
0 0
1.358 0367 0 —473
{0.36? 160 0 ] x 108 ({ —1766} x 1078
0 0 060 0

240 13.2
+z { 2900} x 107° — {2.75} x 10-6(—300))

p——
F88
—
B
It

0 0
4390 13,902
= { —13.767} + 2{464,591 }
0 0

The stress distributions through both the laminar and intraply hybrids are shown
in Figure 6.48. The shear stress is zero for both laminates becauvse yfy =0 and
kyy = 0. A small variation in fiber orientation in either the 0° or 90° lamina can
cause a slight mid-surface shear strain and curvature «.,. The effect these have on
the stress in gach laminate depends on the thickness of each lamina.

T T T I T 1 17T ] T 1 rr T T T l+~‘1‘ .l' T ‘l'

0.04 |- ET 4 4 .
0.02 _,/‘D— —-]
L e &0° y
£ 0.00 P -
N - —Or @, - laminar ‘f] .
002 - - g, - laminar -y —
I -#- o, -intraply ‘:' 3
-0.04 | -& o, - Inlraply AD -

111 J_l L3 3 1 l 1 1 | ] | S l " k'l'\l .L’. I 11 1

AP
-20 -15 -10 -5 0 5 10
Stress (ksi)

Figure 6.48. Normal stresses in [0/90] laminar and intraply hybrids.

6.10 Short Fiber Compasites

Short fiber composites (SFC) cannot generally be analyzed using CLT techniques.
The response of a short fiber composite may or may not be orthotropic. Short
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fiber composites generally consist of chopped fibers or whiskers dispersed in
a matrix. Random fiber crientation and discontinuily through the mairix makes
it difficult to mode! response characteristics using CLT. Analysis of short fiber
composites generally requires experimental evaluation as presented is ASTM STP
772 [50]. Establishing a predictive capability for short fiber composites requires
appropriate modeling of the mechanism of stress transfer between fiber and matrix.
Subsequently, modulus and strength predictions can be made. These topics are
briefly presented and follow the discusions of Agarwal and Broutman [51]. In
some special cases classical lamination theory techniques can be applied to short
fiber composites as described by Halpin and Pagano [52] and Halpin, Jerine, and
Whitney [53).

6.10.1 Stress Transfer and Modulus Predictions

In a composite, loads are not applied directly to the fibers, but rather to the matrix.
The loads experienced by the matrix are then transferred to the fibers through
the fiber ends. For composites consisting of long continuous fibers, the effects
of load transfer at the fiber ends can be neglected. For short discontinuous fiber
composites, end effects have a significant effect on the behavior of the composite.
The shear-lag analysis presented by Rosen [54] is a modification of the analysis
developed by Dow [55] and is one of the most widely used techniques for assessing
stress transfer. In order to evaluate the stress distribution along a length of fiber,
consider the model shown in Figure 6.49.

fcc o
105 Y T

z I — - dz

. _
—»l2r le—
+ o, ¢ o, +t:1rcr1

Figure 6.49. Equilibriam model for a short fiber.

The normal stress in the composite (o.) comprises a matrix stress (o) and a fiber
strtess (o7). The normal stress in the composite is assumed to be transferred to
the fiber by a shear stress (). Assuming the fiber has a cylindrical shape with a
radius r and length L, the stresses are expressed in terms of forces by satisfying
the condition of equilibrium:

Z F =0=ainr®} + 2ant(dz) — (r*Mog + dop)
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The equation of equilibium can be manipulated to yield a relation between of
and t at the fiber—matrix interface as the differential equation doy/dz = 21/r.
Integrating over an arbitrary length of fiber results in

2 Z
Uf=0m+'—/ rdz
rJo

where oy, is the stress at the fiber end. At the fiber end, matrix yielding (adjacent
to the fiber) or separation of the matrix from the fiber may occur because of large
stress concentrations. For simplicity it is assumed that og is negligible, resulting in

2 4
oy = —/ tdz (6.46)
0

r

The solution of this equation requires a knowledge of the shear stress distribu-
tion along the fiber. Assumptions regarding the distribution of t are required. A
common assumption is that the matrix surrounding the fiber is perfectly plastic, so
that the interfacial shear stress along the fiber ts constant. It is assumed to have a
value equal to the matrix yield stress {(r = 7} which results in

2 2
oy = —/ ydz = “fy? (6.47)
r Jo r

The mechanism for generating normal stress in the fiber is through shear transfer.
The normal stress at each fiber end is zero and the maximum normal stress occurs
at the mid-length of the fiber (z = L/2); therefore,

(@mar = 22 (6.48)
r

The magnitude of (Ofhnax is limited. Assuming the fiber and matrix have not
separated, simple rule-of-mixtures approximations are applied. The normal strain
in the composite (£.) must equal both the fiber (£r) and matrix () strains, so that
£. = £ = &n. For the uniaxial state of stress in Figure 6.49, the stress and strain in
the fiber and composite are related by o, = E &, and ¢ = E¢gy. In order to maintain
the condition &, = &; = £y, it is a simple matter to show that (oy)max = (Ef/Ec)oe.
The elastic modulus of the composite can be approximated using the rule-of-
mixtures relation given by equation (3.36).

Transfer of shear into normal stress does not necessarily occur over the entire
lenpth of the fiber. The length of fiber over which load is transferred is called the
load-transfer length, designated as L, and shown in Figure 6.50. The minimum load
transfer length in which the maximum normal stress in the fiber can be achieved
is obtained from equation (6.48) by noting that the fiber diameter is 4 = 2r and
letting L = L;, resulting in

L _ (Uf)max

d 2t

(6.49)
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Figure 6.50. Load-transfer length.

Equation (6.49) can be expressed in terms of the elastic moduli of the fiber and
composite, since (Of)max = (E¢/Ec)o,:
Ly _ Eio;

d  2E.m7, (6.50)
The distribution of stress along the fiber depends on assumptions of perfectly
plastic or elastic-plastic matrix material. The problem of interfacial stresses has
been investigated using various techniques [51, 56—64]. The distribution of stresses
as a function of fiber length, from Agarwal and Broutman [51}], is presented in
Figure 6.51.

(01 )max o, (31‘ )max

Tty ! =Ty iy’

|
1
] ———:]
L_L<Lt —al L=L, Lol el

Figure 6.51. Fiber and shear stress variation vs fiber length.

I"—I

A simple model can be obtained using the Halpin-Tsai equations (3.47-3.50).
Assume an aligned short fiber composite, as shown in Figure 6.52, as opposed to
random fiber orientations. The L. and T designations in Figure 6.52 refer to the
longitudinal and transverse directions of the laminated sheet, respectively.

TT

Figure 6.52. Aligned short fiber composites,

The parameter £ in the Halpin-Tsai equations is assumed to have two distinct
values, one for the longitudinal (L) and one for the transverse (T) directions. As
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discussed in Halpin [65], it is assumed that £ = 2L/d for the longitudinal direction
and & = 2 for the transverse direction. The moduli estimated from the Halpin—Tsai
equations are

EL _1+QL/dyve Er _ 14 2nror

= — (6.51)
En I — Loy En = nrv

where

(E:I'/Em)_l _ (Ef/Em)_l

C T EEm) +20/d T EEmy 12 6-32)

These approximations are for an aligned fiber composite. For a random fiber
composite, as discussed in Sandors [50], the elastic modulus is approximated from
5

3
E tandom = EEL + EET (653)

where £1 and E7 are approximated from equation (6.51).

The stress in the composite can also be estimated using rule-of-mixtures approx-
imations. Assuming the same perfectly plastic matrix that was used to define
equations (6.47-6.50), an estimate of o, can be made. The variation of normal
stress in the fiber (g7) depends on the fiber length. We define the average normal
fiber stress as oy = (1/L) fOL aydz. This is determined from the area under the oy
curve in Figure 6.51:

_ 1 L

O'f=§(0'f)max= y? for L =1L,

L (6.54)
Tr= (O)max | | — — for L
Ot = (O )max ( 2L) or L > L,

For very short fiber composites (L = L), the shear failure stress is for the matrix,
not the fiber. Using a simple rule-of-mixtures approximation, the composite stress
1$ 0, = O + Oy¥y. The ultimate strength of the composite depends on fiber
length, diameter, and the uitimate strength of each constituent meterial (osy, oy ).
For a composite with very short fibers, the matrix properties dominate the solution,
whereas for composites with fiber lengths greater than L,, the ultimate fiber strength
dominates the solution. The ultimate stress in the composite for either case is

L
L=l ogy= FUT + OnlUtm
L (6.55)
L>1L ow=ow (l - i) vt + Omutm

Another form of short fiber composite is a ribbon-reinforced, or tape-reinforced,
composite as shown in Figure 6,53, It has a higher strength and stiffness in the
longitudinal and transverse directions than conventional short fiber composites.
Approximations to the elastic moduli for this type of composite can be made
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Figure 6.53. Ribbon composite schematic.

using the Halpin—Tsai equations. Because of the geometry of cach ribbon, the
volume fraction of fibers (v¢) used in the Halpin—Tsai equations is replaced by
the volume fraction of ribbon (vr). Using Figure 6.53, it can be shown that v is
approximated by

1
T 200 = (@/WOIlL + (tm/10)]

(6.56)

Ur

The Halpin—Tsai approximations to the longitudinal and transverse moduli for a
ribbon composite are
Ey =FEv + E,aun

_E_T _ L+ 2(W, /tomy (6.57)
En N I — ey

where (ELJEn) — 1
e = rom (6.58)
© T (E/Em) + 2W /1)

The elastic modulus of the ribbon (E,) must be experimentally determined.

6.10.2 Laminate Approximation

Halpin and Pagano [52] developed an approximate method for estimating the stiftf-
ness of short fiber composites based on approximations from laminate analysis.
They assumed the material exists in sheet form as shown in Figure 6.54. Their
procedure is based on estimating the mechanical behavior of short fiber laminates

Figure 6.54. Short fiber composite sheet.
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using micromechanics approaches presented in Halpin {65]. Based on microme-
chanics, modulus estimates are a function of the ratio of fiber length to diameter
(L/d) and volume fractions of fiber and matrix. The Halpin-Tsai equations were
used in Halpin [65] to establish the different parameters in terms of (L/d). It was
found that only E;; is sensitive to (L/d).

Provided the sheet thickness is much less than the average fiber length, the rein-
forcement can be considered a random 2D array of fibers. These in turn are assumed
to be quasi-isotropic, which allows one to express the principal material direction
elastic properties as

- — E
1 2 vi2 L3 v 12 200+

(6.59)

Halpin and Pagano found it convenient to use invariant forms of Uy and Us: Uy =
(301 + 3@ + 2042 + 406)/8 and Us = (Qy1 + @22 — 2012 + 4066)/8. From
CLT, Q1 = E1/(1 —vizvn), Q2 = E2/(1 — vipvm), Qiz = viz@x = va O, and
(et = G12. The estimates of the moduli in these expressions come from the predic-
tions in Halpin [65], in which equations (6.51) and (6.52) are used to define E,
and E,. Substitution of the appropriate moduli into the invariant forms of I/, and
U, allows equation (6.59) to be expressed as
= AUs(U, — Us) (Uy — 2Us)

G=Us E=—"""""2" {= """l 6.60
5 Ul u 78 (6.60)

Halpin and Pagano [52] showed a reasonable approximation to E using this
procedure.

6.10.3 Laminate Analogy

The laminate analogy for short fiber composites was developed by Halpin et al.
[53]. Although a typical short fiber composite may appear to consist of random
fiber orientations (Figure 6.55a), it is assumed that there is actually a fiber bias
(Figure 6.55b).

XAV P I
‘:_-\ \,-' - N -
~| — k/‘/ AE—,“_..‘BAQ

L

{a) Rarndom fiber orientation {b) Biased fiber orientation

Figure 6.55. Short fiber composites (@) with random fiber orientations, and (b) with
biased fiber orientations.

In the biased fiber orientation, not all fibers are considered to have a preferred
direction of odentation. The percentage of fibers orientated at some angle & can



Www.iran—-mav ad.com

o

_\‘94 IR g VL/_?_A,__\_\ 2= o Laminate Amllysls 273

be expressed as f(6)/h, where h is the thickness of the composite and the angle
f may be positive or negative. The percentage of fibers oriented at some angle is
estimated by an experimentaily determined angular distribution function,

/mf(9)49= 1.0
0

Accounting for fiber orientation variability in this manner allows each component
of the extensional stiffness matrix to be defined as

N

o
=3 1% @) ©.61)
k=1

The A; ;(6%) terms are determined from the general material behavior for a short
fiber composite as defined by the procedures of Halpin (65]. For example, assume
that the procedures in Halpin [65] are used to establish the following [(Q] matrix
for a short fiber composite:

25 035 0
Q] = [0.35 1.2 0 ] x 10%
0 0 075

Next, assume that the short fiber composite {with a total thickness ¢) defined by
this [Q] matrix is examined, and the fiber bias recorded in terms of a percent of
total fibers at some angle 8 to a reference axis (assumed to be the x-axis). Assume
that the following information has been cellected:

Fiber Percent
Orientation ¢ Fibers with &
(Degrees) Orientation
5 35%

15 25%

30 20%

45 15%

60 5%

For each angle the A; {6k} has to be established. Using CLT procedures results in
A};(6,) = 1[Q;;]. Consequently,

1 — — . _ —
Ajj = B {0.35[0;,1s + 0.25(Q;;115 + 0.20[@; ;)30 + 0.15[0;;1as + 0.05(Q,; o

Substituting the appropriate numerical values yields

241 035 0.18
[A] = [0.35 1.48 0.18] x 108

0.18 .18 0.75
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This approximation for predicting the behavior of a short fiber composite is based
on the laminate analogy. Since the procedure is based on a single-ply lami-
nate, there is no bending-extension coupling ([B] = 0). An approximation (o the
bending stiffness can be made by analogy to CLT, resulting in

_ .
(Dl = [QU]E

Short fiber composites are not generally treated as laminates. The procedures
presented here are only a demonstration of approximations that can be made in
order to use CLT in dealing with estimates of the elastic modulus for short fiber
composites.

6.11 References

1. Ashton, J. E_, J. C. Halpin, and P. H. Petit. Primer on Compasite Materials.
Westport, CT: Technomic, 1969.

2. Jones, R. M. Mechanics of Camposite Materials. New York: Hemisphere
Publishing, 1975.

3. Vinson, J. R., and R. L. Sierakowski. The Behavior of Structures Composed
of Composite Materials. Dordrecht, The Netherlands: Martinus Nijhoff
Publishers, 1986.

4. Pister, K. §., and 5. B. Dong. “Elastic Bending of Layered Plates,” J. Eng.
Mech. Div., ASCE, 85 (1959): 1-10.

5. Reisner, E., and Y. Stavsky. “Bending and Stretching of Certain Types of
Heterogeneous Aelotropic Elastic Plates,” J. Appl. Mech., 28 (1961): 402-408.

6. Ugural, A. C. Stresses in Plates and Shells. New York: McGraw-Hill, 1981.

7. Reisner, E. “The Effect of Transverse Shear Deformation on the Bending of
Elastic Plates,” J. Appl. Mech., 12 (1945): A66-AT9.

8. Tsai, S. W. “Structural Behavior of Composite Materials,” NASA CR-71, 1964,

9. Azzi, V. D, and S. W. Tsai. “Elastic Moduli of Laminated Aniasotropic
Composites,” Exp. Mech., June (1965): 177-185.

10. Mason, J.-A. E., 8. D. Copeland, and J. C. Seferis. “Intrinsic Process
Characterization and Scale Up of Advanced Thermoplastic Structures,” SPE
ANTEC '88 Conference Proceedings, Atlanta, GA, 1988.

11. Chapman, T. J., J. W, Gillespie, J.-A. E. Mason, . C. Serefis, and R. B. Pipes.
“Thermal Skin/Core Residual Stresses Induced During Process Cooling of
Thermoplastic Matrix Composites,” Proceedings of The American Society
of Composites, Third Technical Conference. Westport, CT: Technomic,
pp. 449-458, 1988.

12. Chapman, T. J., J. W. Gillespie, R. B. Pipes, J.-A. E. Mason, and J. C. Serefis.
“Prediction of Process-Induced Residual Stresses in Thermoplastic Compos-
ites,” J. Composite Materials, 24 (1990): 616—628.

13. Jeronimidis, G., and A. T. Parkyn. “Residual Stresses in Carbon Fibre - Thermo-
plastic Matrix Laminates,” J. Composite Materials, 22 (1988): 401-415.

14. Manechy, C. E., Y. Miyanao, M. Shimbo, and T. C. Woo. “Residual-Stress
Analysis of an Epoxy Plate Subjected to Rapid Cooling on Both Surfaces,”
Exp. Mech., 26 (1986): 306-312.



15.

16.

17.

18.

20.

21.

22

23,

24,

25.

26.

27.

28.

29.

30.

31.

32.

Www.iran—-mav ad.com

Slgs awdigs 9 Hbezdils x> e Laminate Analysis 275
Manson, J.-A. E., and J. C. Serefis, “Internal Stress Determination by Process
Simulated Laminates,” SPEANTEC 87 Conference Proceedings, Los Angeles,
CA, 1987.

Narin, J. A., and P. Zoller. “Matrix Selidification and the Resulting Residual
Thermal Stresses in Composites,” J. Mater. Sci., 20 (1985 355-367.

Kim, R. Y., and H. T. Hahn. “Effect of Curing Stresses on the First-Ply-
Failure in Composite Laminates,” J. Composite Materials, 13 (1979): 2-16.
Whitney, J. M., I. M. Daniel, and R. B. Pipes. “Experimental Mechanics of
Fiber Reinforced Composite Materials,” SESA Monograph No. 4. Westport,
CT: Technomic, 1982.

. Tsai, S. W. “Strength Characteristics of Composite Matenals,” NASA CR-224,

April 1965.

Hyer, M. W. “Some Observations on the Cured Shape of Thin Unsymmetric
Laminates,” J. Composite Materials, 15 (1981): 175-194.

Hyer, M. W. “Calculations of the Room-Temperature Shapes of Unsymmetric
Laminates,” J. Composite Materials, 15 (1981): 296-310.

Hyer, M. W. “The Room-Temperatere Shape of Four Layer Unsymmetrical
Cross-Ply Laminates,” J. Composite Materials, 16 (1982): 318-340.

Harper, B. D. “The Effect of Moisture Induced Swelling upon the Shapes
of Antisymmetric Cross-Ply Laminates,” J. Composite Materials, 21 (1987).
36-48.

Narin, J. A., and P. Zoller. “Residual Thermal Stresses in Semicrystalline
Thermoplastic Matrix Composites,” Proc. 5th Int. Conference of Camposite
Materials, San Diego, CA, 1985.

Narin, J. A,, and P. Zoller, *Residual Stresses in Amorphus and Semi-
crystalline Thermoplastic Matrix Composites,” Toughened Compaosites, ASTM
STP-937. Philadelphia: ASTM, 1987.

Master, J. E., and K. L. Reifsnider. “An Investigation of Cumulative Damage
Development in Quasi-Isotropic Graphite/Epoxy Laminates,” Damage in
Composite Materials, ASTM STP 775. Philadelphia: ASTM, pp. 40-62, 1982.
Highsmith, A_ L., and K. L. Reifsnider. “Stiffness Reduction Mechanisms in
Composite Laminates,” Damage in Composite Materials, ASTM STP 775.
Philadelphia: ASTM, pp. 103-117, 1982,

Jamison, R. D, and K. L. Reifsnider. “Advanced Fatigue Damage Develop-
ment in Graphite/Epoxy Laminates,” AFWAL-TR-82-3103, Air Force Wright
Aeronautical Laboratories, December 1982,

Bailey, J. E., P. T. Curtis, and A. Parvizi. “On Transverse Cracking and
Longitudinat Splitting Behavior of Glass and Carbon Fiber Reinforced Epoxy
Cross-Ply Laminates and the Effect of Poisson and Thermally Generated
Strains,” Proc. Roval Soc. (London) A, 366 (1979): 599-623.

Harrison, R. P., and M. G. Bader. “Damage Development in CFRP Laminates
under Monotonic and Cyclic Stressing,” Fiber Science and Technology, 18
(1983): 163-180.

Jamison, R. D. “The Role of Microdamage in Tensile Failure of
Graphite/Epoxy Laminates,” Fiber Science and Technology, 25 (1985); 83-99.
Sun, C. T, and K. C. Jen. “On the Effect of Matrix Cracks on Laminate
Strength,” J. Reinforced Plastics, 6 (1987): 208-222,



276

33.

34,

35.

36.

37.

38.

39.

41.

42.

43.

45.

46.

47.

48.

49,

50.
51.

52.

Www.iran—-mav ad.com

Lominar Composites oo oo 5 Lomiils o> o

Whitney, J. M., and J. E. Ashton, “Effects of Environment on the Elastic
Response of Layered Composite Plates,” AIAA J, 9 (1970): 17081712,
Pipes, R. B., J. R. Vinson, and T. W. Chow. “On the Hygrothermal Response
of Laminated Composite Systems,” J. Composite Materials, 10 (1976}
129-136.

Springer, G. 8., ed. Environmental Effects on Composite Materials, Westport,
CT: Technomic, 1981.

Tsai, S. W., and H. T. Hahn. Intreduction to Composite Materials, Westport,
CT: Technomic, 1980.

Tsai, S. W, and N. J. Pagano. “Invariant Properties of Composite Materials,”
Composite Materials Workshop, 5. W, Tsai, ). C, Halpin, and N. J. Pagano,
eds., Westport, CT: Technomic, 1968.

Lovell, D. R. “Hybrid Laminates of Glass/Carbon Fibers—1,” Reinforced
Plastics, 22 (1978): 216-225.

Lovell, D. R. “Hybrid Laminates of Glass/Carbon Fibers —2," Reinforced
Plastics, 22 (1978). 252-261.

Summerscales, J., and D. Short. *Carbon Fiber and Glass Fiber Hybrid Rein-
forced Plastics,” Composites, 9 (1978): 157-164.

Short, D., and J. Summerscales. “Hybrids — A Review, Part 1, Techniques,
Design and Construction,” Composites, 10 (1979): 215-225.

Short, D, and J. Summerscales. “Hybrids — A Review, Part 2. Physical Prop-
erties,” Composites, 11 (1980): 33-40.

Hayashi, T. “Development on New Material Properties by Hybrid Composi-
tion,” Fukugo Zairyo {Composite Materials), 1 (1972): 18-26.

. Phillips, L. N. “The Hybrid Effect— Does it Exist?’ Composites, 7 (1976):

7-14.

Zwben, C. “Tensile Strength of Hybrid Composites,” J. Mater. Sci., 12 (1977):
1325-1333.

Marom, G., S. Fisher, F. R. Tuler, and H. D. Wagner. “Hybrid Effects in
Composites: Conditions for Positive or Negative Effects versus Rule of
Mixtures Behavior,” J. Mater. Sci., 13 (1978): 1419-1425.

Chamis, C. C., R. F, Lark, and J. H, Sinclair. “Mechanical Property Chai-
acterization of Intraply Hybrid Composites,” Test Methods and Design
Allowables for Fiberous Composites, ASTM STP 734. Philadelphia: ASTM,
pp. 261-269, 1981.

Manders, P. W., and M. G. Bader. “The Strength of Hybrid Glass/Carbon
Fiber Composites, Part 1. Failure Strain Enhancement and Failure Mode,”
L Mater. Sci., 16 (1981): 2233-2239,

Fariborz, 8. J., C. L. Yang, and D. G. Harlow. “The Tensile Behavior
of Intraply Hybrid Composites I: Model and Simulation,” J. Composite
Materials, 19 (1985): 334-354.

Sandors, B. A, ed. Short Fiber Reinforced Composite Materials — ASTM 5TP
772. Philadelphia: ASTM, 1982,

Agarwal, B. D, and L. J. Broutman. Analysis and Performance of Fiber
Composites. New York: John Wiley and Sons, 1980.

Halpin, J. C., and N. J. Pagano. *The Laminate Approximation of Randomly
Oriented Fiberous Composites,” J. Composite Materials, 3 (1969): 720-724.



53.

54.

35.

56.

57

38.

59.

61.

62.

63.

65.

Www.iran—-mav ad.com

Slge pwdipe g \’/‘L\:_?_M_i\_\ & Lamdinate Apalysis 277
Halpin, J. C., K. Jerine, and J. M. Whitney. “The Laminate Analogy for 2
and 3 Dimensional Composite Materials,” J. Composite Materials, 5 (1971):
36-49,

Rosen, B. W. “Mechanics of Composite Strengthening,” Fiber Composite
Materials, Metals Park, OH: American Society for Metals, Chapter 3, 1964.
Dow, N, F. “Study of Stresses Near a Discontinuity in a Filament Rein-
forced Composite Sheet,” General Electric Company Report No. TISR635D61,
August 1963,

Carrara, A. 8., and F. J. McGarry. “Matrix and Interface Stresses in a Discon-
tinuous Fiber Composite Model,” J. Comp. Mar., 2 (1968): 222-243.
MacLaughlin, T. F., and R. M. Barker. “Effect of Modulus Ratio on Stress
Near a Discontinuous Fiber,” Exp. Mech., 12 (1972): 178-183.

Owen, D. R, and J. F. Lyness. “Investigations of Bond Failure in Fibre Rein-
forced Materials by the Finite Element Methods,” Fibre Sci. Technol., 5 (1972):
129-141,

Broutman, L. J., and B. D. Agarwal. “A Theoretical Study of the Effect of
an Interfacial Layer on the Properties of Composites,” Polym. Eng. Sci., 14
{1974y, 581-588.

Lin, T. H., D. Salinas, and Y. M. Ito. “Elastic-Plastic Analysis of Unidirec-
tional Composites,” J. Comp. Mat., 6 (1972): 43-60.

Agarwal, B. D., J. M. Lifshitz, and L. J. Broutman. “Elastic-Plastic Finite
Element Analysis of Short Fiber Composites,” Fibre Sci. Technol., 7 (1974):
45-62,

Agarwal, B. D. “Micromechanics Analysis of Composite Materials Using
Finite Element Methods,” Ph.D. Thesis, Illinois Institute of Technology,
Chicago, 1L, May 1972,

Agarwal, B. D., and R. K. Bansal. “Plastic Analysis of Fibre Interactions in
Discontinuous Fibre Composites,” Fibre Sci. Technol., 10 (1977): 281-297.

. Agarwal, B, D, and R, K. Bansal, “Effects of an Interfacial Layer on the Prop-

erties of Fiberous Composites: A Theoretical Analysis,” Fibre Sci. Technol.,
12 (1979): 149-158.

Halpin, J. C. “Strength and Expansion Estimates for Oriented Short Fiber
Composites,” J. Composite Materials, 3 {1969): 732-734.

6.12 Problems

The material properties for the following problems can be found in Tables 4.2
and 4.3.

6.1 Compute [A], [B], and [D] for a T300/5208 (reference [42] in Chapter 4)

laminate with each of the following stacking sequences, and discuss your
results. Assume that the thickness of each ply is 0.005 in.

(A} [0/60/—60} (B) [0/60/—60]); (C) [60/15/—30/—75],

6.2 Determine a laminate stacking arrangement different from those in

Problem 6.1 that results in a guasi-isotropic laminate for an E-glass/epoxy.
Assume each ply has a thickness of 0.010in. Verify the stacking
arrangements by computing [A), [B], and [D].
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6.3

6.4

6.5

6.6

6.7
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For the stacking arrangement given, plot the variation of oy, a,, and o,
through the thickness of an AS5/3501 (reference [42] in Chapter 4) laminate
subjected to the loading condition shown. Assume each ply has a thickness
of 0.005 in, and neglect thermal and hygral effects.

(A) [0/45/—45]; (B} [45/0/-45); (C) [30/45/—45/0],

Ny

Ny

Plot o, o,, and 1, through a [0/905/45,];, T300/5208 (reference [42] in
Chapter 4) laminate for the loading conditions shown. Neglect thermal and
hygral effects, and assume each ply has a thickness of 0.005 in.

() 2000 Ib =) 4500 Ib ©) 3000 Ib

2000 b 4500 |b 3000 |b

Predict first ply failure for an S-glass/XP-251 laminate subjected to a normal
tensile load N, Ib/in. Use the Tsai—Hill theory, and neglect thermal and
hygral effects. Assume that each ply has a thickness of 0.010 in. The laminate
stacking sequence is

(A) [0/904/45/—45], (B) [90/0,/—45/45],

Work Problem 6.5 (A) or (B) using AS/3501 (reference [42] in Chapter 4),
assuming it is loaded with only a shear force of —N,, Ib/in, and 15, =
0.005 in.

Use the Tsai—Hill failure theory 1o predict the load N at which first ply failure
of the [0/45/0/—45] T300/5208 (reference [42] in Chapter 4) laminate occurs.
Neglect thermal and hygral effects and assume that ¢, = 0.005 in.

(A) N (B) N ) N2

N N N/2
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6.12

6.13
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Determine the residual stresses oy, o, and 1., through the thickness of the
following laminates made AS/3501 (reference [42] in Chapter 4, with ¢, =
0.005). Assume AT = —300°F.

{A) [0/90,/45]); (B) [90/02/45]; (C) [45/—45/0/90,4/45],

An E-glass/epoxy (fpy = 0.010) laminate is attached to two rigid walls while
in its stress-free state. Stress concentrations between the wall and the laminate
and hygral effects are neglected. Determine the temperature drop AT required

to produce first ply failure using the Tsai~Hill failure theory if the laminate
stacking sequence is

(A) [0/90,/45); (B) [45/—45/0/904/45],

Assume a T300/5208 (reference [42] in Chapter 4) graphite/epoxy laminate
(tpy = 0.005) is cured so that AT = —300°F. Determine the residual defor-
mations (mid-surface strains and curvatures) for M = 0.005 and M = 0.0125
if the laminate is defined by

(A) [0/90:] (B) [0/90,/45/—45]

Assume the laminate of Problem 6.10 (A) or (B) is subjected to a load N,.
Determine the N, sufficient to produce first ply failure for M == 0.005, or
the lamina in which failure is predicted as a result of curing strains and
curvatures. Use the Tsai—Hill theory.

Assume the laminate of Problem 6.10 (A) or (B) is subjected to the loading
shown. Determine the load N, sufficient to produce first ply failure for M =
0.001, or the lamina in which failure is predicted as a result of curing strains
and curvatures. Use the Tsai—Hill theory.

Determine the load N, that can be supported by the laminate shown prior to
catastrophic failure, The laminate is AS/3501 (reference [42] in Chapter 4,
with f5, = 0.005). The laminate was cured at a temperature of 370°F and is
tested at 70°F. Use the Tsai—Hill theory and neglect hygral effects.

(A) 1904/0]; (B) [0/45/—45/90,];
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Ny

An AS/3501 (reference [42] in Chapter 4) laminate is to be used as a
cantilever beam. A rigid attachment is fixed to the free end of the beam.
The beam must be able to support the loads shown and experience no failure
at a plane 15 in from the free end of the beam. Each ply of laminate is
0.005 in thick. Find the load P that results in first ply failure on plane A
for the following stacking arrangement. Assume AT = —250°F, and neglect
hygral effects.

(A) 10/904} (B) [30/0/90,/45];

(=]
©
‘\Q
-
o

A [90/30/—45/0); laminate is to be used in a design that requires A;; = Ap;.
Determine the angle <& at which the laminate must be oriented in order to
meet the design requirement. Neglect thermal and hygral effects. Assume
toy = 0.010 in. The material is

(A) E-glass/fepoxy (B) B{(4)/5505 (reference [42] in Chapter 4)

The {90/30/—45/0]; laminate of Problem 6.15 is required to respond so that
D)1 = D;;. Determine the angle @ at which the laminate must be oriented in
order to achieve this requirement. Neglect thermal and hygral effects. Assume
that zpy = 0.010 in and the material is

(A) E-glassfepoxy (B) AS/3501 (reference [42] in Chapter 4)

T300/5208 graphite/epoxy (material 2, reference [42] in Chapter 4) and
Scotchply type 1002 glass/epoxy (material 1) are used to construct a laminar
hybrid. The thickness of a graphite/epoxy lamina is 0.005 in, and the
thickness of a glass/epoxy lamina is 0.010 in. Laminate stacking sequences
are designated as a combination of angles and subscripted material numbers.
Numbers that are not subscripted indicate the number of lamina at a particular
angle. For example, [0,/2(90;)/45,]; means that material 1 (glass/epoxy) is
oriented at 0°, then two (2) 30° plies of material 2 {graphite/epoxy), followed
by one ply of material 1 at 45°. The subscript “s” designates a symmetric
laminate. Plot the distribution of o, &,, and 1, through the laminate defined
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below if it is subjected to an applied axial load of N, = 250 Ib/in and
AT = —300°F. Neglect hypral effects.

(A) [45,/45,/90,/90z]s (B) [30,/45:/04/90:]

In Problems 6.18 and 6.19, an intraply hybrid made from materials 1 and 2
above is also considered. For the intraply hybrid a simple rule-of-mixtures
approximation is used to define material properties, as presented in the
following table.

Percent AS/3501

Property 30% 50% 70%
E, 11.8 x 108 15.9 x 10° 20.1 x 10°
E, 1.29 x 10° 1.35 x 10° 1.40 x 10°
G 0.732 x 10° 0.80 x 10¢ 0.91 x 10¢
V12 0.266 0.27 0.274
@ 3.34 x 1078 2.75 x 107 1.51 x 10=¢
o 12.31 x 107° 13.2 x 1079 12.4 x 107

Assume that the thickness of each intraply lamina is 0.010 in.

Assume that the graphite/epoxy constituent of a [0/90; /45;]; intraply hybrid
has volume fractions of 30% and 70%. Plot the residual stress distribution
{in the x—y plane) through the laminate assuming AT = —300°F. Neglect
hygral effects.

An intraply hybrid with 50% AS/3501 is to be used as an interface layer
between glass/epoxy and graphite/epoxy lamina. Each lamina has a thickness
of 0.10 in. Plot the stress distribution through the laminate assuming AT =
—300°F and that it is subjected to an applied load N, = 2000 lbfin. Neglect
hygral effects.

(A) [0/45/3] (B) [0/90/0)

Yy
x *
graphite/epoxy
intraply
glass/epoxy

Assume a randomly oriented short fiber composite is made from a combina-
tion of E-glass fiber and a polyester matrix with a 30% volume fraction of
fibers. The relevant properties for each constituent are Ey = 10.5 x 10° psi,
Eq = 0.50 x 10° psi, d = 400 pin, and L = 0.125 in. Estimate the longitu-
dinal and transverse moduli as well as E andom-

Assume the ftber and matrix properties of Problem 6.20 are applicable to a
short fiber composite with a variable volume fraction of fibers and L/d =
1000, Plot Epanaom ¥s v for 0.25 < w < 0.75.
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6.22 For the section of ribbon-reinforced composite shown, determine Ey, and Ev,

assuming a = 0.300, £, = 12.5 x 10 psi, W, = 0.375, 1, = 0.125, E,, =
0.50 x 10° psi, W, = 0.250, and 7y, = 0.350.

W,
—
= ==z ?r
tw !
= = = =] S
L._.____-: R
a Wm

6.23 Use the material properties and volume fraction of fibers in Problem 6.20
to determine E,(EL) and E»(Etr). Assume vip = 0.25 and G2 =0.75 x
10° psi. Assume that a short fiber composite has a biased fiber orientation
as shown in the following table. Determine [A] for a laminate with a total
thickness of 0.50 in.

& (deg) %
0 10

10 15
30 40
60 15

90 20
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Appendix A

Fundamentals of Matrices

A.1 Introduction

Matrix notation is used extensively in laminate analysis. The mathematics of matrix
manipulation provides a shorthand method of expressing cumbersome sets of equa-
tions. The aspects of matrix algebra considered to be most applicable to classical
lamination theory are presented herein.

A.2 Definitions and Notation for Matrices

A matrix is an array of elements containing a specified number of m rows and n
columns:

apn a2 .... Qinp

a a» axn
[A] =

aAml Am2 .... Qmp

This matrix is commonly called an m x n matrix, where m x n defines the order
of the matrix. A matrix in which m # n is called a rectangular matrix. A row
matrix 1s one in which m = 1 and n > 1, and a column matrix (load or strain) is
one in which m > 1 and n = 1. The notation for each of these is presented below.

Row matrix: [A] = [a11412 ... ain]
Column matrix:
a
A} =4 .

amy

283
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Typically, a set of brackets ([ ]) is used to define rectangular and row matrices,
while braces ({ }) are used to define column matrices.

A special case of the rectangular matrix is the symmetric matrix in which m = n.
A square matrix has special properties and is used extensively in structural theory.

A matrix can be expressed in an abbreviated form as
(A] = [a;}]
where the subscripts i and j define the row and column location of the element

a;; within the matrix.

Several special cases of a square matrix are often encountered in structural analysis.
The first is the identity matrix, in which a; = 1 and a;; = 0. The identity matrix
is generally symbolized by /.

0
1
I = 0

OO
= OO

1

COoOOCCO

A |
000 O0O01
In addition to the identity matrix, a symmetric matrix is often encountered. In

the symmetric matrix a;; = aj;, as illustrated here for a 3 x 3 matrix. The main
diagonal (a;;) defines the line of symmetry for the matrix.

1 2 3
[A]l = [2 4 5]
3 56

The transpose of a matrix is an important operation useful in many cases. Any
matrix (column, row, or rectangular) may be transposed. The transpose of a matrix
is commonly expressed as [A]T or [A]'. In order to transpose [A] into [A]T, every
element a;; in [A] is replaced by a;;:

1 4
[1 2 3 T
w-[2 33 wr-lz ]

In forming the transpose, the first column of [A] becomes the first row of [ATT,
the second column of [A] becomes the second row of [A]T, etc. The transpose of
a row matrix is a column matrix, and the transpose of a column matrix is a row
matrix.

A.3 Matrix Arithmetic

Matrix multiplication or division by a scalar is often used in laminate analysis. In
these operations each element of the matrix is multiplied (or divided) by the scalar.
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The second operation of interest is addition or subtraction of matrices. These
operations can only be performed if the matrices in question are of the same
order. In adding or subtracting matrices, the corresponding elements of each are
added or subtracted. From the definition of matrix addition or subtraction, both
the commutative and associative laws hold.

Commutative: [A] + [B] = [B] 4 [A]
Associative:  {A] + ([B] + [C]) = ({A] + [B]) + [C]

Matrix multiplication in which the product of two matrices ([A]{B]) is to be deter-
mined can only be performed if the number of columns of [A] equals the number
of rows of [B]. This condition of conformability of matrices can be expressed by
the following equation:

[A) B = [C]
(mxn) (nxp) (mx p)

The mathematical definition of matrix multiplication is
n
cij = Z ik
k=1

where n = number of columns of [A] or rows of {B}. This process is illustrated
by the following:

ayy ap| by bp b13] {Cu 12 613]
(€] = [ANB) [021 1122] [b21 by by €1 2 3

[ 215 6 7] _[21 24 27
=3 4|8 9 10|~ [47 54 6l

cn = anbu + aby = (1)(5) + (2)(8) = 21
c12 = anbiz + azb = (1)(6) + (2)(9) =24
€13 = anbiz + anby = (1)(7) + 2)(10) = 27
c21 = anbi + anby = (3)(5) + (4)(8) =47
¢ = anbiz + anbxn = (3)(6) + 4)(9) = 54
€23 = az b1z + anby = (3)(7) + (4)(10) = 61

in which

From the definition of matrix multiplication it can be shown that both the distribu-
tive and associative laws hold.

[AX([B] + (CD) = [AlB] + [A][C]
[AI((BI[CD = (IAlIBDIC] = [A][BIIC]
(IANBYY = [BY[AY
(IANBIICY = [CY(BY{AY
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It is evident from the preceding discussions that matrix addition, subtraction, and
multiplication are relatively simple topics. The mathematical operation of matrix
division has not been addressed since it does not exist in the conventional sense.
The matrix operation analogous to algebraic division is called matrix inversion.

A.4 Matrix Inversion

Matrix inversion is shown to be analogous to algebraic division by considering
the set of algebraic equations below.

X+3Y—-2Z=2
2X—-Y+Z=-3
4X —2Y +4Z =1

This set of equations can be expressed in matrix form as

1 3 ~-1 X 2
[2 O {Y}={_3} a1
z 1

4 -2 4
The symbolic representation for this set of equations can be written as

[A}{X} = {b}

In order to solve this equation for the unknown values of {X}, the [A] matrix must
be inverted to yield
{x} = [A]""{B}

where [A]~! is the inverted [A] matrix. Matrix inversion can be defined so that

[AI A = [ANA] ! =1

Several operations are required in order to define [A]~! in mathematical terms. The
first operation of importance is defining the determinant of [A]. The determinant
of a matrix is commonly written as

|A} = la;;l
where element a;; is located in the ith row and jth column of [A].

The first minor of any determinant |A| (corresponding to an arbitrary element a;;)
is the determinant that remains when the row and column containing element a;;
are eliminated from [A]. For the 3 x 3 matrix in equation (A.1), the first minors
corresponding to ayy, a2, and a;3 are given, respectively, as

-1 1] (2 1} |2 -1
—2 4| |4 a4} |4 -2
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Each element, together with the first minors, defines the cofactor of the determinant.
Each element will have a first minor and a cofactor. The cofactor of a;; is generally
denoted as A;; and is written as

A;j = (—1)*7 x first minor of a;;

For the first minors just formed, the corresponding cofactors are

An=C12|T 4l=—4-(2==2
An =173 H=(—1)(8~4>=—4
A =1 g :§‘=(—4)—<—4)=o

In a similar manner, all other cofactors can be computed.

The numerical value of the determinant can be obtained by using all cofactors
associated with any row or any column of the matrix. The expression for the
determinant when any row of the matrix is used is

Al = Zaiinj (A.2)
=1

where i indicates the row being used. If a column is selected, the rule is
expressed as

Al = aijA;j (A.3)
=1
where j represents the column selected for establishing the cofactors. Based upon
the cofactors just given and equation (A.2), the determinant is
Al = (1)(=2) + 3)(—4) + (1)(0) = —14

In order to determine the inverted matrix [A]~!, the adjoint of matrix [A] must be
defined. The adjoint is written as adj (A). Assuming A;; is the cofactor of element
a;j in matrix [A], the adjoint matrix is defined as

Ay A ... ApY’
A21 A22 PP A2n

adj(A) = : : e ’ (A4)
Al Apz ... Apg

The inverted matrix [A]~! can now be defined as

- dj(A)
Al = adid)
{A] Al
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For the matrix defined by (A.1), the remaining cofactors are
Ay =-10 A3 =2
An =28 Ap=-3
A =14 Ap=-7

This results in

A= —— [—10 8 14] = [—4 8 —3}
i 2 3 7 Bl o 14 7
Using this inverted matrix the solution to (A.1) is easily determined from
X 1 -2 =10 2 2 2.0
{Y}=-_[_4 8 -3}{_3}={ 2.5}
z 410 1 -7 1 3.5

The scope of presentations in this text do not require expanding the coverage of
matrix mathematics beyond this point.
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Appendix B

Generalized Transformations

The stress and strain transformations presented in Chapter 2 are valid only for
rotations about the z-axis. Although this represents the most commonly used trans-
formation from one coordinate system to another, it may not be general enough
for all applications. Therefore, the stress and strain transformations applicable to
arbitrary rotations are presented herein. It is assumed that x, y, and z represent the
original coordinate system, and x’, ¥/, and 7’ the transformed coordinate system.
Transformations from the unprimed to the primed system are assumed to be in
accordance with the possible rotations shown in Figure B.1. Development of the
general transformation equations is not presented, since they are well established
and typically are available in many mathematics and engineering texts.

Figure B.1. General coordinate rotations.

The direction cosines relating the primed and unprimed coordinate systems are
presented next. As with conventional transformations, the designations /, m, and n
are used to represent the direction cosines of the transformed axis with the original
axis. The direction cosines defined here are similar to those used in defining the
orientation of a vector in introductory statics courses. For example, if «, 8, and y
are used to define the angles from the x, y, and z axes, respectively, to a specified
vector, the direction cosines are defined as

I =cosa m=cosf n=cosy
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The difference between these direction cosines and those used for a general trans-
formation is that three possibilities exist for each axis. The direction cosines
relating each primed and unprimed axis are

Direction cosines

x y b4
x’ ll m ni
y I my na
b4 I3 m ns

Stress transformations from the unprimed to the primed system are defined in terms
of a transformation matrix as

’
g, Oy
'

g ¥ o} y

o LA

% =103 ¢
» >

Txz Txz
’

T,y Ty

where [T,] is defined in terms of direction cosines as

[ 13 m? n? 2miny 2n4l4 20imy ]
l% m% n% 2m2n2 2n212 212”!2
l% m§ n% 2m3n3 2n313 213m3

[T,]=
7 Lils mums niny (mns+many) (s +lng) Qims + Iimg)

Ils mams nany  (man3 +mang) (lans +1lang)  (Ioms + I3my)
LIily mimy niny (mny+myny) (Ling+1ny) (Limp +Iomy)

For a case of plane stress where o, = 7,; = 7,; and all rotations are about the
z-axis (as shown in Figure B.2), the direction cosines are I} = m; = cos8, m; =
sinf, I = —sinf, n3 =1, and n; = ny = I3 = m3 = 0. Using these, the stress
transformation matrix in Chapter 2 results:

o, cos? 6 sin® 6 2sinfcosd oy
o, ¢ = sin® @ cos’6  —2sinfcosf o,
Ty —sinfcos® sinfcosf cos?f — sin’f Txy
y
Y™
N x

> 4
\\ //‘9

Figure B.2. Coordinate rotations about the z-axis.
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The generalized form of strain transformation is similar to that for stress transfor-
mation, except that [T,] is replaced by [T.] and is

E; Ex
i .

P =Tl ¢
V‘yz Vyz
Yz Vxz
y;y yxy

Assuming that strains are allowed to be transformed via coordinate axes as defined
by Figure B.1, [T,] is expressed as

i l% mf n% 2m1n1 2n111 211m1
l% m% n% 2myn; 2n,l; 2lomy
13 m3 n} 2m3n; 2n3l3 2l3m;

[T.]=
: 2113 2mums 2niny 2(mynstmang) 20 nstlzng) 20 mat+lsmy)

20503 2mpms 2nyn3 2(mpnstmany) 2(anstling) 2(Lmst-lsmg)
bhlz 2mimy 2niny 2(mynytmany) 2(Linxtlang) 2(Limat-lomy)]

As demonstrated for the case of plane stress, a simplification of this matrix is also
possible. The result, using direction cosines previously defined for the plane stress
case, is a strain transformation matrix identical to that defined in Chapter 2.
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Appendix C
Summary of Useful Equations

C.1 Lamina

Stress and strain transformations:
& £ o oy
-4 = [T,] { £y } 0'; = [T,] { Oy }
Yzy Yxy T, Txy

[ m? n? mn
[T]=1| n? m*  —mn Q@.n
2

where

| —2mn 2mn m?—n

[ m? n? 2mn
[T,]={ n* m® —2mn 2.3)
| —mn mn m*—n?
and m = cos @ and n = siné6.
Off-axis stress—strain relationships:
[0 0 O 0 0 O]
Oy _ — — — Ex
oy Oz On On 0 0 Ox| |
oo | _ |93 On 033 _0 ‘0 O3 & 3.7
Tyz 0 0 0 Qu Qs O Vyz )
by 0 0 0 Q045 Oss O ;
P __st Ox 0Ox O 0 O i >

where
Q11 = Qum®* + 2(Q12 + 2Q66)m*n* + Qpon*
Q12 = (Qu1 + Q22 — 4Qe6)m*n* + Qra(m* + n*)
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Qi3 = Qusm” + Qp3n’

016 = ~Qnmn® + Qum’n — (Q12 + 2Qe6)mn(m* — n?)
0y = Qun* +2(Q12 + 206 )m*n* + Qpm*

033 = Qusn® + Qpm?

025 = —Qm’n + Qumn® + (Qr2 + 2Qs6)mn (m* — n?)
033 =0

Q36 = (Q13 ~ Q23)mn

Q44 = Qum® + Qssn’

Qus = (Qss — Qaa)mn

Oss = QOssm® + Qun®

Ogs = (Q11 + Q2 — 2012)m*n® + Qs (m* — n?)? (3.3)

Plane stress stiffness matrix:

On QOn O
[Q]= [le On O ] 3.9
0 0 Qs
On =E/(1 —vppvy)
0 = E3/(1 —vipvp1)
Q12 = vaEr /(1 — vipv21)
= vy E /(1 —vizup)
Oss = G12
Off-axis relationship:
oy Qu glz 216 &
{Uy } = g12 gzz gzs { £y } (3.10)
Txy O Q6 Qes| ‘Yo

Plane stress compliance matrix:

£1 S11 Si2 0 [25]
&2 = S12 S22 0 oy (313)
Y12 0 0 Ses T2

Su = 1/E,
Si2 = —vi2/E; = —v /E;
Sy = 1/E, (3.14)

Se6 = 1/G12
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Off-axis strain—stress relationship:
Ex Ell ?12 §16 Oy
&y (= |52 S» Sx|q 0y
Yy Ste S26 Se6 | Ty

Si1 = Sym* + (2812 + Ses)m?*n? + Syn*

where

Si2 = (S11 + S22 — See)m’n* + Sip(m* + n*)

Si6 = (2811 — 2512 — Ses)’n — (2822 — 2812 — Se6)mn’
S = Sun* + (2812 + Ses)m*n® + Spym*

S26 = (2811 — 2512 — Ses)mn® — (2872 — 2512 — Se6)r'n
Se6 = 2(2811 + 252 — 4S12 — Se6)m*n® + Ses(m®* + n*)

Relationships between on-axis and off-axis properties (3.19):

E. E; G: E E;
1 4 1 2 4
Ey E1 G12 E1 E2

2 2 4 1 4 4
=2mznz(_+_+ﬂ__)+w
xy E, E, E  Gp G

va(n* +m*) 2( 11 1 >]
=E, | —————— — —_—t = - =
Yy * [ E; e E, * E;, Gnp
Mayx = Ex[Cimn — Comn®] iy, = E.[Cymn® — Conm’)

where
2 AV 1 2 2v2 1
_— — = ==+ —=— - =

T E  E Gp
Thermal and hygral effects for plane stress applications:

C

[ =m2a1 +n2a2

2 2
oy =n"o; +ma
o = a3

oyy = 2mn(a; — az)

. =m’f1 +n’py
By =n’By +m’B,
B:=Bs

Bry = 2mn(B1 — B2)

(3.15)

(3.16)

(3.22)

(3.31)
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On-axis stress—strain relations including thermal and hygral effects:

oy Qu Qn 0 €1 o By
1 & £330
O 0 0 Qe Y12 0 0

Off-axis stress—strain relations including thermal and hygral effects:

Oy Qu le 216 &y Oy By -
{"y}= Qu On O ({Sy}—{ay}AT“{ﬂy}M
Txy Qs Q6 Qes Vxy Pxy Pry

Rule-of-mixtures approximations:

SN———’

E| = Equs+ Equg
_ EiEn
" Enqut+ Egvg
_ Gme
- G + v G

V12 = YVt + UmVm

G2

C.2 Failure Theories

X\’ X\?
af — 0102 + (;) ol + (E) 5 =X?

F110'12 + 2F 0107 + F220’% + F&sl’%z + Fioy+ Fpop =1

Tsai—Hill:

Tsai-Wu:

C.3 Classical Lamination Theory
N
(4] = _[0:)te
k=1
N
[Bijl = Z[Q‘j]ktkzk
k=1

N . t3
[Dij]= Z[Qij]k (tkfi + é)

k=1

For transverse shear, the analogous expression is

N A 5
[Aij]=CZ[Qij]ktk{l+;l_2. (z§+é)}

k=1
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(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
(3.39)

(5.5)

5.7

(6.22)

(6.23)
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Thermal and hygral effects:

MH
M) = {

MH

{NT} = {
M7} = {
{NH} = {

Www.iran—-mav ad.com

=1

F
e
{

} i[Qlk

Olgziils x> e

ATty

}
} AT (%Zx)
|

Be
Z[Q]k By

Bey
N Be
Z[Qu{ By } M(tz)
k=1 Bxy ) &

Load, strain—curvature, and [A], [B], [D] relationships:

Off-axis stresses in kth lamina:

Oy _ Ky oy
(o) (14 el {0 )
Txy 7 &k y Kxy Oxy

(N} = (N} + (NT} + (NH}
(M} = (M} + (M} + (MY}

wONXRO

£
&

o

y

On-axis strains and kth-layer stresses:

{

{a

£
Y]
Y12

Oy

T2

o
=

£x £
&y } =[T,] £ +z {
Vxy 7 k Yay

€ —Qy AT — ﬁl}z
&2 — 07 AT — ﬂzM
Yz

JEr )

AT_{
k
0
y
0

!

Bx
By
ﬂxy

)

(6.25)

(6.26)

(6.29)

(6.30)

(6.32)

(6.33)

(6.35)

(6.36)

(6.37)

(6.38)
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GLOSSARY

The following terms are intended to aid those unfamiliar with the area of composite
materials. This list does not exhaust the possibilities, but does contain many that
a novice in the area of composites may find useful.

Advanced Composites. Generally considered to be composite materials with struc-
tural properties superior to those of aluminum. Composite material systems such
as boron/epoxy and carbon/epoxy are included in this category.

Angle-Ply Laminate. A laminate formed as result of orienting individual lamina
at +6 and —6 with respect to a selected reference axis. The total number of
lamina (plies) does not matter, and an angle-ply laminate is often referred to as a
bidirectional laminate.

Anisotropy. A material response in which the material properties vary with the
orientation or direction of a set of reference axes.

Auteclave. A special type of pressure vessel that can maintain specified temper-
atures and pressures for designated periods of time. Autoclaves are often used to
cure organic matrix composites.

BFRA. An acronym for boron fiber reinforced aluminum.

BFRP. An acronym for boron fiber reinforced plastic.

Balanced Laminate. A laminate in which the total number of lamina (plies)
oriented at an arbitrary angle of +8 are balanced by an equal number of lamina
oriented at —6.

Balanced Symmetric Laminate. A balanced laminate that is also symmetric.

Bending-Extension-Coupling. The coupling between bending and extension that
results from the existence of the [B] matrix for a laminate.

297
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Bending-Twisting-Coupling. The coupling between extension and shear terms
Djs and Dy¢ in the [D] matrix. For a case of pure flexure, it is analogous to the
shear—extension coupling that is present in off-axis unidirectional lamina.

Bidirectional Laminate. An angle-ply laminate in which the fibers are oriented
in two distinct directions only.

Bleeder Cloth. A nonstructural cloth (usually made from fiberglass). It is typically
placed around a composite component during curing to absorb excess resin, and
is removed after curing.

Boron Filament. A manufactured filament that consists of B4C vapor deposited
onto a tungsten core.

Breather. A porous material generally placed within a vacuum bag to aid in the
removal of air, moisture, and volatiles during cure.

Bundle Strength. The strength resulting from a mechanical test of parallel fila-
ments, with or without an organic matrix. The results of this test are generally
used to replace those from tests of a single fiber.

Carbon Fiber. The general name of a wide range of fibers, all of which are made
from carbon.

CCRP. An acronym for carbon (or graphite) cloth reinforced plastic.
CFRP. An acronym for carbon (or graphite) fiber reinforced plastic.

Compliance. A measurement of the softness of a material, as opposed to its
stiffness. It is the inverse of the stiffness matrix.

Constituent Material. An individual material used to produce a composite mate-
rial. Both the fiber and matrix are constituent materials.

Coupling. The interaction of different individual effects into a combined effect. For
a composite lamina this refers to the appearance of shear under the application
of normal loads, and for a laminate it refers to the existence of curvature with
application of normal loads.

Crack Density. The number of distinctive cracks (generally appearing in the
matrix) per unit volume of composite.

Crazing. The formation of matrix cracks, which may be confined to the matrix or
located at the interface between matrix and fiber.

Cross-Ply Laminate. A special case of an angle-ply laminate in which the indi-
vidual lamina are oriented at either 0° or 90° to a reference axis. This laminate is
bidirectional and can have an arbitrary number of lamina.
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Cure. The term typically reserved for the changing of properties of a thermosetting
resin in order to process a composite. The chemical changes within the resin are
irreversible.

Curvature. A geometric measure of the bending and/or twisting of a plate, beam,
or rod.

Dam. An absorbent ridge surrounding a laminate during the cure process. The
dam prevents resin from running out during the process.

Debond. An area of separation within or between the individual plies of a lami-
nate that generally results from contamination during the cure process, improper
adhesion during cure, or interlaminar stresses.

Degradation. The loss of material property characteristics (strength, stiffness, etc.)
typically resulting from aging, corrosion, or fatigue.

Delamination. The debonding of individual lamina, which primarily results from
interlaminar stresses. Delamination can be controlled by proper design considera-
tions.

Epoxy. A thermosetting resin made from a polymerized epoxide. Epoxy is
commonly used as a matrix.

Expansion Coefficient. A material-dependent measurement of the expansion
(swelling) of a composite material due to temperature changes of moisture
absorption.

Fiber. A single filament, either rolled or formed in one direction, and used as the
primary reinforcement for woven or nonwoven composite material systems.

Fiber Volume Fraction. The percentage of fiber contained in a representative
volume of a composite material system.

Fick’s Law. A diffusion relationship used to describe moisture migration in a
material.

Filament. A continuous fiber with high stiffness and strength, used as the primary
constituent in continuous fiber lamina.

Filament Winding. A manufacturing technique by which filaments (and resin)
are placed on a mandrel in a specific manner. Its primary use is in constructing
pressure vessels, pipes, or other axisymmetric structures.

First-Ply Failure Load. The load that causes the initial failure of a ply within a
laminate.

Free Expansion. Thermal or hygral expansion without external stresses.
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GFRP. An acronym for glass fiber reinforced plastic.

Hybrid. A composite material system composed of more than two constituents,
such as a glass/graphite/epoxy composite. Intralaminar hybrids have individual
plies made from two or more distinct fibers and matrix. Interlaminar hybrids have
individual plies made from different fiber/matrix combinations.

Hygrothermal Effect. The change in properties resulting from moisture absorption
and temperature changes.

Interface. A boundary (or transition) region between constituents (fiber and matrix)
or between individual lamina within a laminate.

Interlaminar Stresses. Stress components associated with the thickness direction
of a plate.

Invariant. Constant, regardless of the orientation of the coordinate system.
KFPR. An acronym for Kevlar fiber-reinforced plastic.

Kirchhoff-Love Assumptions. The basic assumptions from which classical lami-
nation theory is established.

Lamina. A single layer (ply) of unidirectional (or woven) composite material.

Laminate. A collection of unidirectional lamina, stacked and arranged in a specific
manner.

Laminated Plate Theory. Sometimes referred to as classical lamination theory
(CLT), it is the most commonly used method for initial analysis and design of
composite laminates.

Macromechanics. Term commonly used to describe the structural behavior of
composites on the macroscopic level.

Mandrel. A male mold generally used for filament winding.

Matrix. The material that binds, separates, protects, and redistributes loads into
the fibers of a composite.

Micromechanics. Term commonly given to the analysis of a composite material’s
response based on a model of the constituent materials and their interaction with
applied loads.

Mid-plane. The geometric middle surface of a laminate, used as a reference posi-
tion for determining laminate response characteristics. It is generally defined by
z=0.
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Moisture Absorption. The increase in moisture content resulting in swelling of
the material.

Mold. A cavity in which a composite part is placed so that it can be formed into
the shape of the cavity.

Mold Release Agent. A lubricant applied to the mold surface so that the part can
be easily removed after curing.

Multidirectional Laminate. A laminate having multiple ply orientations through
its thickness.

Neutral Plane. A plane that experiences no stretching, and subsequently no stress.
Off-Axis. Not coincident with the principal material directions.
On-Axis. Coincident with the principal material directions.

Orthotropic. A material having three mutually perpendicular planes of symmetry.
In an on-axis configuration, no extension—shear coupling exists.

Peel Ply. A fabric applied to a laminate prior to curing. It protects the laminate
from dirt, etc., and is peeled off before curing.

Phenolic. A thermosetting resin generally used for elevated temperatures.

Ply Drop. The reduction of the number of plies in a specific area of a laminate,
thus decreasing its thickness.

Postcure. An additional exposure to elevated temperatures after the initial cure
process.

Preform. A lay-up made on a mandrel or mockup that is eventually transferred to
a curing tool or mold.

Pre-preg. A woven or unidirectional ply or roving impregnated with resin, and
ready for lay-up or winding. Pre-preg is short for preimpregnated.

Quasi-Isotropic Laminate. A laminate that has an [A] matrix similar to that of
an isotropic material, with Aj; = Ay, and A;3 = A3 = 0.

Residual Stress. In a composite, it is the stress generally resulting from cooldown
after curing and/or moisture content.

Resin. An organic material with a high molecular weight. Typically, it is insoluble
in water and has no definite melting point and no tendency to crystallize.

Resin Content. The percentage of resin within a composite material.



Www.iran—-mav ad.com

302 Glossary Slge ypwdige 5 bgziils x> 5o

Resin-Rich Area. An area within a composite where the resin content is higher
than the average content throughout the laminate. It generally results from improper
compaction during cure.

Resin-Starved Area. An area within a composite where the resin content is lower
than the average content throughout the laminate. It has a dry appearance, and
filaments or fabric do not appear to have been completely wetted during cure. It
is probably a more severe condition that a resin-rich area in terms of structural
integrity.

Roving. A loose assembly of filaments that can be impregnated for use in filament
winding, braiding, and unidirectional tapes.

Rule of Mixtures. A linear relationship between volume fractions and constituent
material properties used for predicting macromechanical material behavior.

Scrim. A reinforcing fabric woven into an open mesh and used in the processing
of tape and other materials for handling purposes.

Shear Coupling. The presence of a shear strain (or stress) under loading conditions
generally associated with normal deformations only.

Sheet Molding Compound. A short fiber reinforced composite generally desig-
nated by the acronym SMC.

Symmetric Laminate. A laminate that has both material and geometric symmetry
with respect to the geometric central plane (mid-plane) of the laminate.

Tack. A handling property characteristic generally associated with the stickiness
of pre-preg tape.

Thermal Loads. Laminate loads associated with hygrothermal effects resulting
from the difference in operating and curing temperatures of the laminate and ply
orientations throughout the laminate.

Thermoplastic. An organic material characterized by a high strain capacity and a
non-cross-linked polymer chain. A thermoplastic can be easily reformed with the

application of high temperatures.

Thermosetting Plastic. An organic material that has cross-linked polymer chains.
A thermosetting plastic cannot be reformed after it is initially cured.

Tow. A bundle of loose, untwisted filaments.

Unsymmetric Laminate. A laminate that does not have material and geometric
symmetry with respect to its geometric central plane (mid-plane).
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Vacuum Bag. An outer covering for a composite material curing assembly. The

vacuum bag can be sealed and evacuated to provide a uniform compaction pressure.
It is most often made from a flexible nylon, Mylar, or other elastic film.

Volume Fraction. The fraction of either constituent (fiber of matrix) contained
within a volume of composite material.

Void Content. The volumetric percentage of a composite that contains voids. For
most curing procedures, the void content is generally less than 1%.
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ADDITIONAL REFERENCES

References for Composite Materials

Books and journals represent the major sources from which information regarding
composite materials can be extracted. This section presents a list of references;
however, it excludes many references to manufacturing processes. Conference
proceedings are not cited since their contents receive recognition in journals.
Books are listed first, followed by publications (primarily ASTM publications),
and then journals in which papers dealing with composite materials are
presented.

Books

Agarwal, B. D., and L. J. Broutman. Analysis and Performance of Fiber Compos-
ites. New York: John Wiley and Sons, 1980.

Ambartsumyan, S. A. Theory of Anisotropic Plates. Westport, CT: Technomic,
1970.

Ashbee, K. H. G. Fundamental Principles of Fiber Reinforced Composites. West-
port, CT: Technomic, 1989.

Ashton, J. E., and